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Preface

The goal of this study was to provide a single source document on the effects of noise jamming

on pulsed radar receivers. This study would cover three main topics in depth. These areas to be

covered are the sources of electrical noise, various noise jamming waveforms and the effects of each

jamming waveform on various pulsed radar receivers.

This thesis effort is concentrated on determining the power spectra of various noise jamming

waveforms, determining the pr )bability densities of the )utputs of conventional pulsed radar re-

ceivers and the effects of CW interference on conventional pulsed receivers. As such, this thesis is

only the beginning of what will hopefuliy I e a continuing effort here at AFIT. Altiugh several

texts were referenced in this effort, one document was extremely valuable. This important work

was Threshold Signals by James L. Lawson and George E. Uhlenbeck.

I am deeply indebted to my thesis advisor, Dr. Vittal P. Pyati, for his help in preparing this

thesis. He was able to keep me on a consistent track when I would begin to wander. I also wish to

thank Lt Col Meer and Lt Col Norman who both provided valuable assistance toward this effort.

They also sat on my thesis committee, for which I am indebted. I have to especially thank my wife,

Sue, for allowing me the flexibility to work at all hours at home without interruption. It really

made a difference.

Paul E. Bishop
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Abstract

A comprehensive study of the effects of noise jamming on various pulsed radar receiver types is

proposed. First, a literature review on the sources of electrical noise and various jamming waveforms

is presented. The power spectra for three noise jamming waveforms are rigorously derived. These

cases are shot noise in a parallel-plate diode, a series of pulses with random amplitudes and intervals,

and for a series of pulses with r,....om amplitudes, spacing and phases. Next, the probability density

functions for the output of linear and quadratic detectors are developed. For each detector type, the

probability density functions for the cases of noise only and signal plus noise are derived. Finally,

the effects of CW interference on conventional pulsed radar receivers is accomplished. This analysis

shows that the effect of a pure CW tone as an interfering signal is that it increases the minimum

power required for detection. As the CW tone is detuned from the signal carrier frequency the

minimum power required for detection increases until the detuning is so great that the effects of

the CW is negligible. This thesis lays the ,:ound work for a much broader future study of the

effects of noise jamming on various pulsed radar receiver types.

vii



A STUDY OF THE EFFECTS OF NOISE JAMMING

ON RADAR RECEIVERS

L Introduction

A study of the effects of noise jamming on radar receivers is proposed. The result of this study

will be a comprehensive reference on the effects of various types of noise jamming on different types

of radar receivers.

1.1 Background

1.1.1 Radar Principles Radar is an acronym for radio detection and ranging. A radar

system can measure the range to a target by transmitting a pulse of electromagnetic energy, and

measuring the time the pulse takes to reflect off a target and return to the radar receiver. The time

for a pulse to travel one nautical mile and return is called a radar mile. A radar mile is defined as

12.35/usec (6:8). However, before any information can be obtained from a transmitted radar signal,

that signal must first be detected.

A radar receiver detects a target by comparing the voltage of the received signal with a preset

threshold voltage. If the received voltage is greater than the threshold, the radar is said to have

detected a target. Radar receivers are designed to meet two main opposing specifications. These

are the probability of detection (Pd) and probability of false alarm (Pfa). A radar's probability of

detection is a measure of how often the radar will actually detect a target when a target is present.

The probability of false alarm is a measure of how often a radar will decide that a target is present

when there is not a target present. The parameters of Pd and P1 a are used to determine a radar's

required signal-to-noise ratio (SNR) and the minimum required signal power (18.28). An increase

in the noaise power will result in a decrease in the signal-to-noise ratio. The decrease in SNR, which
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is due to an increase in noise power, causes a decrease in the radar's probability of detection and

an increase in the radar's probability of false alarm.

1.1.2 Radar Receiver Types There are several types of radar receivers in use today. Four of

the most common radar receiver designs can be grouped into four main categories. These are the

conventional receiver, the matched filter receiver, the pulse compression receiver, and the constant

false alarm rate (CFAR) re-.eiver.

The conventional receiver uses a n.,.dlinear element followed by a threshold comparison device

to detect the presence of a radar pulse. One examph of a conventional re eiver is a simple envelope

detector, also known as a linear detector. A n, ,.)nd type of conventional receiver employs a quadratic

detector. This type of detector :s also referred to as a square law detector. A matched filter receiver

is designed to maximize Lte output signal-to-noise ratio (18:369). The matched filter compares the

received waveform with a stored replica of the transm..ted pulse. One commonly used method of

implementing the matched filter is with a correlator (18:375). A correlator multiplies a received

signal with a reference signal, which is matched to the transmitted pulse, and then integrates the

resulting product over a specified time period. The typ- of pulse compression rec,'ver analyzed is

the linear FM chirp receiver. This type of receiver is employed in high range resolution imaging

radars. The CFAR receiver will be the last receiver structure analyzed. The CFAR receiver employs

an adaptive threshold to maintain a constant probability of false ala. m (18:39). These four receiver

types are the most common structures found in search radar systems.

1.1.3 Noise Principles Electrical noise is electromagnetic energy across a broad range of

frequencies, which is characterized by random fluctuations of amplitude, frequency, phase, etc.

Noise is the chief parameter that limits a radar receiver's sensitivity (18:18). Noise is also the

primary factor affecting a receiver's Pd and Pla. There are several sources of electrical noise. Two

main categories of noise are the noise that originates within the receiver and noise external to the

receiver. Thermal noise is the primary type of noise generated in a radar receiver. The power of
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thermal noise is directly proportional to the temperature of the receiver. Thermal noise is present to

a certain degree in all electrical devices. Some types of external noise sources are man made noise,

cosmic noise and electronic countermeasures (ECM). The effects of thermal noise can be reduced

by proper ieceiver design, but call never I- totally eliminated. Radar receivers are designed for a

qpecific Pd and Pj a given the known value of thermal noise generated in the receiver.

A radar signal must travel through an environment where electrical noise is present. A radar

receiver receives a signal that is the summation of the desired radar waveform and the external

noise (15:36). A large value of noise power may cause the receiver to nnnounce th presence of

a target when in reality, no target is present. This false detection is termed a false alarm, and

increases the radar's probability of false alarm. A second effect of the external noise is to force

the rece.ver to conclude there is no target when an actual target is present, thereby decreasing the

radar's probability of detection.

1.4..4 Noise Jamming Noise jamming is one of several active electronic countermeasures

techniques. The primary noise jamming method is to produce a signal that is as random, or noise-

like, as possible (6:83). The optimum noise jamming signal produced Dy a jammer should be a

close approximation of the thermal noise that is produced by the radar receiver (20:293).

One must consider several variables when analyzing the noise jamming problem. The jammer

power is one of the most critical parameters. To be effective, the level of the jamming must be

greater than the energy of the received pulsed radar signal (6:89). The statistical characteristics

of the noise jamming waveform are also important. For a noise jamming signal to be effective, the

statistics of the noise should be as close to the statistics of the receiver thermal noise as possible.

Similarly, a deception jammer attempts to mimic a radar target return. The primary goal of noise

jamming is to increase the radar's P a and decrease the radar's Pd by producing a high power noise

waveform that approximates the thermal noise already present in the receiver.
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1.2 Problem

Adequate employment of radar systerms, in an environment where noise jamming is used by

an enemy, requires knowledge of the effects of the Pc'ise jamming on the radar receiver. Conversely,

effective noise jamming against an enemy radar requires the knowledge of the effects of the noise

jamming on the enemy's radar receiver. Presently, no comprehensive study exists on the effects of

various noise jamming waveforms on different types of radar receivers' probability of false alarm

and probability of detection. A comprehensive study includes the characterization of the sources

of electrical noise, the statistical parameters of different noise jamming waveforms, and an analysis

of the effects of these jamming waveforms on various radar receiver types. The goal of this thesis

effort is to provide such a comprehensive study. The result of this effort will be a single sourc. of

reference for the effects of noise jamming on radar receivers.

1.3 Assumptions

Several assumptions must be made in the analysis of the effects of noise jamming on radar

receivers. The effects of jammer antenna gain, target characteristics, range, and jamrer power can

be disregarded. Instead, the jammer-to-signal (J/S) ratio will be used in place of these parameters

(1:14-11-14-12). By the same reasoning, propagation effects will be disregarded. The radar receiver

will be assumed to have linear response characteristics up to the detector stage. This assumption is

a reasonable approximation, which allows for much simpler calculations. However, the detector is

generally a nonlinear network and cannot be modeled with linear characteristics. For all analyses,

only a single pulse will be considered. For the multiple pulse case there are simple techniques

available to determine the required signal-to-noise ratio. A lossless system will be assumed. Any

system losses will be a constant factor that will not impact the effects of the noise jamming.

Finally, the radar receiver will be assumed not to incorporate any specific electronic counter-

countermeasures (ECCM). All these assumptions lead to a lossless receiver model that i- linear up
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to the detector stage, which is affected only by the receiver's thermal noise and the external noise

jamming. Therefore, the impact on the modeled receiver's Pd and Pj a will be due solely to the

radar jamming.

1.4 Approach

The study of the effects of noise jamming will be approached in thiee parts. First, the

sources of electrical noise will be characterized. Next, the noise jamming waveform statistics will

be modeled. Finally, the noise jamming waveform statistics will be applied to the four different

receiver models to determine the effects of the jamming on the receiver's P a and Pd.

The sources of electrical noise will be characterized by their statistical properties, specificdlly

by theil probability density and power spectral density. The two primary sources of noise to be

modeled are thermal noise and shot noise. Both of these sources can be modeled as white (uniform

power spectral density) and Gaussian (normal) density. This model of noise most closely resembles

the noise present in the receiver. Shot noise and thermal noise are the primary sources of noise

used in radar noise jammers. These two noise sources are the most popular because they are simple

to generate by radar jammers.

After the sources of noise have been modeled, the iloise jamming waveforms must be charac-

terized. As with the noise sources, the noise jamming waveforms are modeled by their statistical

properties. Although the noise jamming waveforms under consideration approach the ideal receiver

thermal noise characteristics, there are differences that must be considered in the analysis of their

effects on .he radar receivers. These differences are reflected in the noise power spcctral density

and probability density function. The noise jamming waveforms to be modeled are direct noise

amplified (DINA), frequency modulated (FM) by-noise, and amplitude modulated (AM) by-noise.

Also, continuous wave (single frequency) and random pulse waveforms must be considered. These

waveforms are used extensively in current radar noise jammers.
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The analysis of tile jamming effects on the receivers will follow techniques demonstrated by

Lcvson and Uhlenbeck (11) and those outlined by Bennighof and others, as well as several other

radar text books (1). The statistical characteristics of the noise jamming waveform will be applied

to the transfer characteristic of the radar receiver to determine the output noise characteristics.

The result of this analysis will be the probability density and power spectral density of the noise

output of the receiver. This will be accomplished for the cases where an actual target is present

and when a target is not present. One technique to analyze the effects of the radar jamming is to

apply the detectability criteria outlined by Lawson and Uhlenbeck (11:161-165). The application of

these criteria will give an indication to the required power levels for detection. A second technique

is to apply the two probability densities to the known decision technique for each radar receiver

type. This technique is similar to the likelihood ratio test. The results of the likelihood ratio will

determine the regions where the Pd and P. can be calculated. The resulting Pd and P a will be

compared with the Pd and Pja for the receiver when no noise jamming is present. The difference

in the receiver's Pd and Pp, will be due to the noise jamr .ing. This analysis will be accomplished

for each of the noise jamming waveforms through each of the separate receiver types.

1.5 Scope

This study is limited to the analysis of the effects of noise jamming on search radars, However,

the techniques used ar- applicable to the analysis of the effects on tracking radars as well. Four

types of noise jamming waveforms will be used in the analysis. These waveforms are continuous

wave (CVv) interference, DINA, AM by-noise and FM by-noise. These waveforms are the major

jamming signals employed in current noise jammers (1.14-9). Only pulsed radars will be considered.

With some slight differences, the methods employed in the analysis can be aj plied to other radar

types, such as continuous wave (CW) and pulse doppler (PD) radars. Four basic pulsed radar

receiver types will be analyzed in this study. These receiver typos are the conventional receiver,

the matched filter receiver, the pulse compression receiver and the CFAR receiver.
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This thesis effort, as a part of a much larger study, is limited to the analysis of the effects of

continuous wave interference on two types of conventional receiver detector structures: the linear

detector, and the quadratic detector. The analysis is limited to the application of the deflection

criterion outlined by Lawson and Uhlenbeck to determine the minimum signal power required for

detection (11:161). Although this effort is limited to the analysis of CW interference on conventional

receivers, the techniques developed here can be easily applied to the analysis of the effects on other

receiver structures by various jamming waveforms.

1.6 Summary

In this chapter, a study of the effects of noisejammng on various radar receivers was proposed.

This chapter also provided the necessary background, assumptions, and the approach to accomplish

this study. This chapter also outlined the scope of this particular thesis effort. Chapter II is a

literature search on the sources of electrical noise and on various noise jamming waveforms. In

Chapter III the power spectra for three specific jamming waveforms are derived. The probability

density functions for the output of linear and quadratic detectors are developed in Chapter IV.

Probability density functions for the cases of noise only and of signal plus noise are derived for each

detector type. The effects of continuous wave interference on linear and quadratic detectors are

analyzed in Chapter V. Lastly, Chapter VI contains conclusions and recommendations for further

work in this study.
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I. Literature Review

Before analyzing the effects of noise jamming on radar receivers, one needs an understanding

of two main subject areas. These subject areas are the sources of electrical noise used in radar

jammers and noise jamming waveforms. The critical parameters to consider for the sources of noise

are the signal's probability density function and power spectral density. These two parameters

are also important to the study of noise jamming waveforms. A great deal of research has been

conducted in these araas. Therefore, the goal of this literature review is to determine the most

recent research in these areas, and the results of that research.

2.1 Noise Sources

The basis of most radar jamming signals is a source of electrical noise. Any noise source

may be generally categorized in one of two ways, either by its power spectral density (PSD) or

the probability density function (PDF) of one of its parameters (usually the amplitude of the noise

voltage). The PDF of a signal is a measure of how likely a particular amplitude of the signal is,

whereas the PSD of a signal is a measure of how much power is contained in specific frequency

bands. Turner and others point out that " ... the ECM goal is to produce white Gaussian noise in

the victim radar receiver" (19:118). Gaussian refers to the PDF of the amplitude of the noise. This

type of noise has a Gaussian or normal amplitude PDF (represented by the familiar bell shaped

curve). White noise is noise that has a uniform or flat PSD over all frequencies, analogous to the

concept of white light, which contains light at all visible wavelengths (9.48). The true goal of noise

jamming is to produce a Rayleigh distributed noise output from the victim receiver's detector(7.66).

The Rayleigh PDF is closely related to the Gaussian PDF. Rayleigh distributed noise describes the

envelope of the output of a radar's intermediate frequency (IF' filter when the input of the filter is

Gaussian noise (18:24). It is sufficient for the analysis of the effects of noise on radar receiveis that

the PSD of the noise be uniform only over a specific frequency bandwidth of interest, generally the
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receiver bandwidth. There are several sources of white Gaussian noise. The most common sources

are thermal noise and shot noise.

Thermal noise is due to the random motion or fluctuations of electrons in conductors (9:47).

When quantum mechanical effects are neglected, this type of noise has a flat or uniform power

spectral density, directly proportional to the temperature of the device (21:9). By the central limit

theorem, which states that for the sum of a large number of independent samples the limiting

form of the PDF is Gaussian, thermal noise has a Gaussian PDF with a mean value of zero and a

variance equal to the mean square value of the noise voltage (9:48-49). Thermal noise is present to

a certain extent in all electrical devices and can be exploited as a noise source for radar jammers.

Another source of electrical noise commonly used in radar jammers is shot noise.

Shot noise results from the flow of electrons in active devices such as vacuum tubes and

semiconductors. In vacuum tubes, the shot noise is caused by the current induced from the ran-

dom emission of electrons from the heated cathode (4:112). The shot noise in semiconductors is

caused by currei t flows generated when carriers (electrons and holes) randomly crossing the p-n

barrier (22:93). Davenport and Root provide the development of the PSD and PDF of shot noise

in thermionic vacuum tubes for both the temperature-limited diode and the space-charge-limited

diode cases (4:112-143). They showed that for frequencies less than the reciprocal of the electron

transit time in the diode, the PSD of shot noise can be approximated by a flat spectrum (4:123).

This spectrum is proportional to the average current through the diode, as opposed to the device

temperature as is the case for thermal noise. Shot noise is also a phenomenon present in semicon-

ductors. Van der Ziel developed expressions for shot noise in semiconductor diodes for both the

low frequency and high frequency cases (22:93-109). lIe also presents an expression for the PSD of

noise from a back-biased p-n diode, and states that large amounts of noise power can be generated

in this case (22:48). Penney and others describe the back- biased diode as an "extremely iot noise

generator" (9:71). '3y the application of the central limit theorem, the PDF of shot noise in both
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vacuum tube diodes and semiconductor diodes can be shown to approach a Gaussian density. Shot

noise, like thermal noise, is one excellent source of white Gaussian noise.

The properties of Gaussian noise make it an ideal choice for radar jamming signals. Turner

and others define a measure of jamming performance, the noise quality (19:117-122). The noise

quality is a measure of how closely the PDF of the jamming signal approaches that of a Gaussian

density. The authors show that a high value of noise quality can lead to a reduction in the required

jamming-to-signal ratio (J/S) (19:117). For a given level of effectiveness against a pulsed radar,

this reduction in J/S can be as much as 17 dB (a factor of 50) over a low noise quality signal

that produces the same effect (19:117). Based on the work done by Turner and others, Knorr

and Karantanas outline a computer simulation, in use at the Naval Postgraduate School, for the

optimization of various jamming waveforms (10.273-277). This computer simulation compares the

PDF of the jamming waveform with a Gaussian PDF, having the same mean and variance, to

arrive at a value for noise quality, as defined by Turner and others (10:274). Work continues at the

Naval Postgraduate School in this area. Even though Gaussian noise is the most common source of

noise for radar jammers, other noise densi'ties can also be used. Two such noise sources are random

pulses and single frequency, or continuous wave (OW) noise.

Random pulses can be used as one source of noise for ajamming signal. Lawson and Uhlenbeck

present a thorough analysis of the power spectra of random pulse signals (11.43-46). They provide

the derivation of the power spectra for a series of pulses with random amplitudes, random pulse

repetition intervals, and random phases (11:43-46). The power spectrum for a series of pulses

with random amplitudes is a continuous spectrum that has the same shape as the power spectrum

of a single pulse (11:44). However, the power spectrum for a series of pulses with random pulse

repetition intervals is dependent on both the spectrum of a single pulse and the probability density

of the pulse intervals (11:44). Maksimov and others present expressions for the average values of

pulse duration and pulse spacing for random pulse waveforms (12.44). Random pulse waveforms
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may be used alone as a jamming source. A series of random pulses can also be used to modulate

other noise waveforms.

A continuous wave signal (single frequency tone) can also be a source of interference to a radar

receiver. For any given frequency, the CW tone can have a randomly varying amplitude and phase.

Jordan and Penney present an expression for the PDF of the voltage of the CW interference (9:46-

47). The PDF of the amplitude of the CW interference tollows a somewhat parabolic distribution

between the peak voltage values (9:46-47). For the density of the phase of CW interference, in the

case of a pulsed radar it is equally likely that the CW interference is in phase with the received

radar pulse as it is out of phase with the pulse (11.336). As is the case for random pulses, CW

tones can be used alone as a jamming signal.

2.2 Jamming Waveforms

There are several types of waveforms employed in noise jammers. This section will discuss

three main types of barrage jamming waveforms. Barrage jamming refers to radar jamming over a

broad band of frequencies, as opposed to spot jamming which is defined as the jamming of a specific

frequency (6:253,268). These barrage jamming waveforms are direct noise amplified (DINA), fre-

quency modulated (FM) by-noise and amplitude modulated (AM) by-noise. The majority of what

follows in this section is taken from a chapter of Electronic Countermeasures entitled "Effectiveness

of Jamming Signals" by Bennighof and others (1:14-1-14-65).

DINA is merely amplified, bandlimited Gaussian noise (1:14-9). Over the passband of interest,

DINA can be considered wvhite (uniform PSD) (1:14-9). DINA can be easily generated by amplifying

low level thermal noise (1:14-9-14-10). DINA has all of the properties of white Gaussian noise.

For the purpose of analyzing the effects of DINA on radar receivers, the noise can be considered

to be additive. That is, the noise is added to the radar signal prior to reception. The analysis of

the effects of additive white Gaussian noise (AWGN) is presented in several radar texts. Skolnik
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gives an analysis of the effects of AWGN on a radar's probability of detection and probability of

false alarm (18:23-29). There are other jamming waveforms employed in radar jammers that are

not truly Gaussian, but approach a true white Gaussian noise source.

In addition to DINA, FM-by-noise is one frequently employed class of noise jamming wave-

forms. There are two distinct types of FM-by-noise: FM-by-WB (wideband) noise, and FM-by-LF

(low-frequency) noise. (1:14-10). Each type of FM-by-noise waveform has different effects on radar

receivers. FM-by-noise is used extensively in current radar jammers.

One frequently used noise jamming waveform is FM-by-WB noise. FM-by-WB noise produces

a spectrum nearly the same as that of DINA. (1:14-10). Bennighof and others showed that the noise

output of a radar receiver's IF filter due to FM-by-WB noise can be the same as the IF filter output

due to DINA (1:14-10). The effects of FM-by-WB noise are the same as those of DINA when the

bandwidth of the barrage jamming waveform is greater than the noise bandwidth, and greater than

the receiver bandwidth (1:14-22). Another FM-by-noise waveform used in several noise jammers is

FM-by-LF noise.

FM-by-LF noise is produced in much the same way as FM-by-WB noise, but the noise signal is

confined to a much narrower modulating bandwidth, a bandwidth less than the victim radar's band-

width (1:14-10). Bennighof and others point out that FM-by-LF noise has two main advantages:

FM-by-LF noise produces more power out of the victim radar's IF filter than does FM-by-WB

noise, and FM-by-LF noise is more effective in the jamming of radar systems which use plan po-

sition indicator (PPI) displays (1:14-10). They also point out that FM-by-LF noise has one main

disadvantage, that its effects are easily negated by electronic counter-countermeasures (ECCM)

(1:14-10).

FM-by-noise is an extremely popular jamming waveform. Cassara and others describe a

technique to generate a unifolm PSD jamming signal from a Gaussian source using an FM-by-noise

method. (2:330). The technique they present is to pass Gaussian noise through a nonlinear network,
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followed by a fr. q :oncy modulator (2:330-332). The result of their work was an extremely good

source of uniform PSD noise over an electronically controlled bandwidth (2:332). The analysis

presented by Knorr and Karantanas was mainly geared towards the study and optimization of

FM-by-noise waveforms (10:273-277). The results of their study gave an indication of methods to

improve the noise quality of an FM-by-noise waveform (10:275-277).

Another jamming waveform, although used much less frequently than FM-by-noise, is AM-by-

noise. The AM-by-noise effects are similar to those of DINA, but it is difficult to produce wideband

noise in this manner (1:14-11). This difficulty arises because the bandwidth of the AM-by-noise

waveform is limited to tv,ice the bandwidth of the modulating noise (1:14-11). This bandwidth

limitation results from the property that the bandwidth of any AM (double sideband) signal is

equal to twice the bandwidth of the modulating signal. Another reason that AM-by-noise is not as

popular for use in jammers is that part of the total power transmitted by an AM-by-noise jammer

is lost in the carrier (assuming large-carrier AM). In fact, no more than 50 percent of the total

power wvill be in the jamming portion of the signal. The remaining power is in the carrier (12:37).

A further jamming technique is one that employs random pulse modulation. With this

method, either an FM-by-WB noise or DINA waveform is pulse modulated. (1:14-11). The re-

sulting random pul-e jamming waveform employs random duration, spacing, and amplitude of the

pulses, where the average pulse duration should be the same as the victim radar's pulse width

(1:14-11). The effects of the random pulse jamming waveform are similar to those produced by

the FM-by-LF noise waveform (1:14-11). The most effective random pulse jamming signal is one

in which the amplitude, pulse duration and pulse interval are all varied randomly. However, such

a signal is difficult to generate (12:42). It is much simpler in practice to generate a signal with

constant amplitude pulses where the duration and pulse interval are varied randomly (12:42).
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2.3 Summary

As this chapter has pointed out, a great deal of work has been accomplished in the area of

noise jamming. This literature search has concentrated on the sources of electrical noise and on

noise jamming waveforms. Equations for the PDF's and PFD's of several different noise sources

have been developed. There has also been much effort in the area of analyzing noise jamming

waveforms. The goal of this review was to determine the most current information on these two

subjects.
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III. Power Spectra

One of the main parameters to consider when studying the effects of jamming on radar

receivers is the power spectral density (PSD) of the noise waveform. The PSD describes the

frequency distribution of power in the noise jamming waveform. In this chapter, the power spectra

for three cases is developed. First, the PSD for the shot noise in a parallel-plate diode is derived.

Next, the PSD for a series of pulses of random amplitudes and spacing is developed. From this PSD,

the special cases of the PSD for random binary transmission and the boxcar spectrum are derived.

Lastly, the power spectrum for the general case of a series of pulses with random amplitudes,

spacing, and phases is derived. For this general case, the special cases of the PSD of the random

binary transmission and of the random telegraph signal are developed.

3.1 Shot Noise

In this section, the power spectral density of the shot noise in a temperature-limited parallel-

plate thermionic vacuum tube diode is be derived. Much of the development here follows the

treatment of this subject by Davenport and Root (4:112-124).

The anode current pulse due to the travel of a single electron is represented by the following

equation:

io(t) f ' - - (3.1)
0 , elsewhere

where

q -- charge per electron ( -1.6 x 10- 19 Coulomb)

r = transit time
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The total current flowing through the vacuum tube diode is the sum of the individual electron

current pulses. The total current in a time interval (-T, T) resulting from the flow of K electrons

is represented by the following equation:

K

I(t) = Zi,(t-tk) for -T<t <T (3.2)
k=1

where

tk = emission time of the kth electron

The number of electrons emitted in a given time interval is assumed to have a Poisson dis-

tribution. The probability of K electrons emitted in a time interval r is given by the following

expression for the Poisson distribution:

P(K,r) = (r)I exp (-WT) (3.3)
K!

where

n = average number of electrons

The following statistical properties are obtained from the Poisson distribution:

Er(K) = 7 (3.4)

E , (K 2 ) = jj7 + (Tj 2) (3.5)

Varr (K) = f97 (3.6)

3-2



3.1.1 Average Current The total diode current I(t) is a function of th oal number of

electrons emitted, K, and the emisski a times of each electron, I'he tk's. These terms are all random

variables. The average current is obtained from the expected value of the total current I(t):

E [I(t)] = . .. I(t)p (tl,...,tK, K) d ... dtdK (3.7)

The joint PDF of the number of electrons and the emission times may be written

p(tI... ,tK, K) = p(ti,.. ,tic I KMp(K (3.8)

The emission times, the tk's, are independent, uniformly distributed random variables with proba-

bility density function (4:117-119)

P(tk) t < - -t +2T (3.9)
0 ,elsewhere

Since the tk's are statistically independent random variables, the joint PDF of the emission times

and the number of electrons becomes

p(tx,...,t ,K) = p(t, I K) .. .p(tK, I K)p(K) (3.10)

and the expected value of the total current can be written

E [I(t)] = p(K)dK t... JI() .--

= I0 p(K)dK ... 0 -0 ( dt dti
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E [1(t)] J p(K)dK T( ) dt... dtK-1 i (t - tk) dtK0[(0 = (~~! I ) IT f T

co p(K)dK [i ( ) K(2T)K- q] (3.11)

Let 7(t) = E j(t)]. The expected value of the current (the DC current) is

Wo K

7 = I p(K)dK q

_0 k=1 2Tq'00
= TT1I Kp(IC)dK
= -2 (K) K2T 0

TT E2T(K)

= 'iq (3.12)

3.1.2 Power Spectral Density By the application of the Wiener-Khinchine relationship,

which states that the power spectral density of a stationary process is obtained from the Fourier

transform of the autocorrelation function, the power spectral density is obtained (17:145). The

autocorrelation function is derived as follows:

RI(r) = E [I(t)I(t + r)]

= ... 1j I(t)I(t + r)p(t, tK, K)dt1 ... dtkdKf

Ei,(t -tz i i ,+ t)P(ltI) ,tK,K)..dt KdK (3.13)

00 i=1 j=l

Because the tL's are independent and uniformly distributed with the probability density function

of Eq ( 3.9) the equation for the autocorrelation function may be written
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00o j.T T K K dt dtK

RI(r) = p(K)dK j_ E.. ,ie ti) Ei(t+ri-t)- -"
oo T - i=1 j=1

p(K)dK T 1 T i,(t- t)i+j-tj ) -] (3.14)
00fT2T -T

There are K2 terms under the double summation: K terms when i = j, and K 2 - K terms

when i 0 j.

For i = j

-t /)K ( Tj
j ... j. )-~t d - - (2T)K -  ie(t)i,(t + r)dtY2T T 2T2T_

1tT

T IT i(t)iQ(t + r)dt (3.15)

For i 6 j

T _ /_ T,, -t ,)K w)K2 7
' dr.. -T i6(t - t)i,(t+7r-tj)T T (27)f -  T i,(t - ti)dt

xT T i (t + r - tj)dt

_T

I' i,(t)dt i,(t)dt

T T= q2 (1) (3.16)

Combining the above two cases, the autocorrelation function of the total current is now
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RI(T 1= j [12 - K) (_)2 + K jcQ,()i,(t + T)dt] p(Kf)dK

-(_L) 
2j0f (I(2 _ K) p(K)dK

+ ie(t)ie(t + r)dt] j Kp(K)dK

- E2T (K2 
- K) FT E2T (K) j i,)i,(t + r)dt (3.17)

Using Eqs (3.4) and (3.5) the expectations are

E2T(K) = 2T- (3.18)

02T (1(2 - x) = (2Th) 2  (3.19)

With these expectations, the autocorrelation function is

= (7) 2 (2Tn)2 + T(2Th)j ie(t)i,(t +r)dt

= (q1) 2 + W i,(t)i,(t + T)dt (3.20)

The shot noise current of interest is the AC portion of the total current (the fluctuation about

the mean value). Let i(t) be the AC diode current:

i~t) = I(t) - 7(t) (3.21)

The autocorrelation function of the AC current is
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Ri(r) = i8 (t)i,(t + r)dt (3.22)

Since the shot noise is a stationary process, the Fourier transform of the autocorrelation

function of the process yields the power spectral density of the shot noise:

00
Si(f) = j (')e-i2rf dr

- I -0 ie(t)i,(t + r)dte-j 27frfdr (3.23)

Let r =t' - t, so the power spectral density now becomes

si(f) = j j-dt ie(t')dt'

= . C io(t)ej 2',dt j ie(t')CI27rft'dt (3.24)

Let G(f) be the Fourier transform of the current pulse:

G(f) = 0i(t)e-jtdt (3.25)

where

w = 2-V

so that the power spectral density is

Si(w) = TIG(w) 12  (3.26)
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For low frequency values (f 4Z 1/r) the PSD is approximately

Si(w) ' IG(0)I2  (3.27)

From Eqs (3.1) and ( 3.25) G(0) = q and it follows from Eq ( 3.12) that the power spectral density

is approximated by

Si (w) ; 7 q (3.28)

which is the Schottky formula.

3.1.3 The Power Spectral Density for the Parallel-Plane Diode In this section the power

spectral density for the shot noise from the parallel-plane diode will be developed. The expression

for the power spectral density is given by Eq ( 3.26). The current pulse is defined by Eq (3.1) and

the Fourier transform of the current pulse is

G(w) = I02
* te-jwtdt2q

2 ( 1, _ -j7)

2q [(1 -coswla -Wr, sinwra)+ j(sinwra -wr,"acoswra)] (3.29)

The square of the magnitude of the Fourier transform of the current pulse is

[G(w)12 = 2 [) - cosw7, - w7a sin win)2 + (sin wra _'W7a coswra)2]

4 q( [(Wroa)2 + 2(1 - cos w,, - wa sinw,,)] (3.30)
(W.3),
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Substituting the above equation into Eq (3.26) the power spectral density becomes

Si(w) [(q2  wra.)2 + 2(1 -coswra - wT0, sin w-ra) (3.31)

From Eq ( 3.12) WIq = 7 and the power spectral density becomes

S 4q1 [(Wo)2 + 2(1 - cosw-r - W7a sin wr)] (3.32)

which is illustrated in Figure 3.1.

Sii

22

l I I I I

-4-r -2-r 0 2-r 4-r
Normalized Radian Frequency, wira

Figure 3.1. Parallel-Plane Diode Shot Noise PSD

This equation agrees with the expressions for the PSD derived by Davenport and Root (4:124) and

Papoulis (14:357-360).
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3.2 Pulses with Random Amplitudes and Intervals

The power spectral density for a series of pulses with random amplitudes and pulse intervals

is developed here. An infinite series of pulses with random amplitudes and intervals is defined by

tile following equation:

Co

y(t)= E ak.g(t - kT, - ck) (3.33)
k=-oo

where ak is the pulse amplitude with PDF p(a), T is the average pulse repetition interval, and ck

is the deviation from T of the kth pulse with PDF p(e) and E(c) = 0. The series is truncated to

a finite interval from -NT to +NT:

N

yx (t)= akgki - kT0 - ck.) (3.34)
k=-N

A portion of a series of pulses with random amplitudes and spacing is illustrated in Figure 3.2.

The Fourier transform of the sequence is

N

YN(f) = G(f) E ake - j 2f(kTo+C;) (3.35)
k=-N

where the Fourier transform of a single pulse is

G(f) = g(t)e-j2 f'dt (3.36)

3.2.1 Power Spectral Density The expected value of the power spectral density is derived

here. The expected value will be used since the ak and Ck terms are random variables. The average

PSD is defined by

3-10



alj--i)o o o

yNOa3 H Time, t

Figure 3.2. Series of Pulses with Random Amplitudes and Spacing

Sy )T0 IYN(f)1 2  (3.37)

where there are approximately 2N + 1 pulses between -NTO and +NT.. The square of the mag-

nitude of the Fourier transform of the series of pulses is represented by the following equation:

N N

IYN(f)I2 = IG(f)1 E E akale-j2 2r(k.+ck )e+j 2 rflT+ci) (3.38)
k=-N 1=-N

The expected value of the above equation is

N N

IN(f)12 = IG(f)12 L L [e-i2jk-kTe+ j7r
°TQ

k=-N 1=-N

X E (ckae-'2 .rftke+27fct)A (3.39)

3-11



Since ihe ak's and ck's are statistically independent the expectation in the above expression has

the following values

E (akaie-2 ,rJ,.e+2 1rfz)= E(a 2 ) , k= (3.40)
E2(a) ' c(f)12  

, kA

where

I -0(f) p(C)ei 2 -cdc (3.41)

which is the characteristic function of the deviation, c.

There are 2N + 1 terms where k = 1. Therefore the expression for the square of the magnitude

of the Fourier transform becomes

IYN(f)I = IG(f)12 [(2N + l )E(a2) + E2 (a) I ' (f)j 2  E - _- j 2 I k- e+j 2 f zT °  (3.42)

The double summation in the above equation may be written

N N

E F, -j27fk-T,+j2xf IT. _ (2]V+ 1) + E E &j2,fkT-e +j2rflT.
kol k=-N 1=-N

NV 2

= -(2N + 1) + E e - j27rfk T .  (3.43)
Ik=-N

so that the expected value of the magnitude of the square of the Fourier transform now becomes
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IYN(f)W 2  = IG(f)j 2 {(2N + 1) [E(a2) - E2 (a) IC(f) ]

N
+E 2 (a) I',D,(f) 2  e- j 2 x kT ° 1 (3.44)

k-N

The average power spectral density is arrived at by taking the limit of the above expression as N

approaches infinity:

Sy (fN 1)To IG(f)12 (2N + 1)[E(a2)._ E2(a) I'D(f)l2]

= N-co (2N + 1)7, 1

+ _rE 2  ( a ) I f ) 2  I N j 2 rf k T . 2 }

= - IG(f)12 E(a2) - E2(a) I,(f)2

+2(a) I.%(f)I 2~)n 2N+ I N 2}

The summation in the above equation may be expanded using Euler's formula and can be written

N N -1

e
-

j2
x
fkT 1 1+ T e

-
j2

r
fkT + E e-.i2?rfk7o

k=-N k=i k=-N

N N

= 1+ Ee - j 2 rkT. + EZe+
j 2 7rfkT *

k=i k=1

N

= 1+ E (e- 2 j kTo + e(+34fk6

k=1

3I + 2 E cos 2-,rfkTo (3.46)
k=1
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The following expression for the sum of cosines is given by Eq (1.342,2) from Gradshteyn and

Ryzhik (8:30):

n oskz n + 1 nx x
cos kx = cos n sin +c1se +1 (3.47)2x II-.cosece2

k=O

which can be manipulated to the form

N co s 'Y+1- x sin -
coskx = x (3.48)

k=1 sin 2

Using Eq ( 3.48) the summation in Eq (3.46) becomes

N = 2 cos (N+ ) 27rfkT, sin N2,rfkT,
- j 2 7r f k  +2- n 2 7fk 2 (3.49)

k=-N sin 2

Using the trigonometric identity

1 st(A+B--1
cos A sin B = shs (A +B) -- sin (A - B) (3.50)

the summation can be expressed as

N sin (2N + 1)rfT, - sin rfT
E - j27kTo = 1 +srfT

k=-N

sin 7rfT + sin (2N + 1),rfTo - sin zrfTo

sin 7rfTo
sin (2N + 1)rfTo (3.51)

sin -rfT,

The limit now becomes
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NJim 2N-Ze2;rf k-TO 2 1N [ Esin (2N + 1)7rfTj,2  (3.52)
N-oo2N 1 imo IV+ I sin -7rf27,

By letting

0 = (2N +1)

a = drfT0

the limit can be expressed

lim 1, -j2;rfA;'i I flco Ira s2a) (3.53)

Using the following expression for the limit of the square of the sit.:-over-argument in the above

equation

im - si f = b(a) (3.54)

leads to the following form

lim 21 -j2rfkT.

= ir6(a) sia ~= (3.55)

By L'I~pital's rule, the following result is achieved:

lim -p-.=1 (3.56)
a-0 sin 2 a

which leads to the following equation:
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N 2
lim 1 ~ e- j21rfkTo = ;r6('rfT0) (3.57)

N-co FN + k-

Using the following property of the delta function

6(4e) = -6(f) (3.58)
lall

the limit can now be written

N 2

nolim I -2rkTo = ---6(f) (3.59)

However, the expression

sin (2N + 1),>rfTo (3.60)
sin 7rf T

is periodic, with period To. So, the limit of the above summation becomes

lim e-j rfkT (3.61)
N-ooN+ ' k=-N n=0  b(f (

Substituting the above expression into Eq ( 3.45) the average power spectral density becomes

Sy 1 12 2)j2 (a) 2+ 1E (2 11,'(f) 12 CO b n ) I 32

Ty-(f = T-JG~f) E(a) - E(a E~~fI 12 -(.2
n=O

This expression for the power spectral density is similar to those derived by Lawson and

Uhlenbeck (11:43-44). However, this expression takes into account both random amplitudes and

random intervals, where Lawson and Uhlenbeck have separate equations for each case. Also, the
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magnitude of the expression derived here is one half the magnitude of the expressions derived by

Lawson and Uhlenbeck. The difference is because Lawson and Uhlienbeck use a one-sided spectrum,

whereas the spectrum derived here is two-sided.

3.2.2 Special Cases In this section, two special cases of PSD of a series of pulses with random

amplitudes and spacing. First, the power spectral density of the random binary transmission is

derived. This derivation is followed by the development of the boxcar spectrum.

3.2.2.1 Random Binary Transmission One special case of the expression for tile power

spectral density of pulses with random am.plitudes and spacing is the random binary transmission

as defined by Papoulis (14:294, 341). The amplitudes are equally likely, and distributed according

to

__1

P(a = 1) = P(a = -1)= (3.63)

Which leads to the following expected values:

E(a) = 0(3.64)

E(a2) = 1

The Fourier transform of a single square pulse is given by

G(f) = T [sin (irfT)1 (3.65)I rfT J

where T is the pulse duration. In this case T is a fixed value. Therefore, the deviation, e is zero.

This implies that p(e) = 6(c), and (D,(f) is unity. From Eq (3.62) this leads to
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n0SUf) = JG(f) 12 [E(a') _ E2(a) + IE 2(a) E -fP (3.66)

Substituting Eqs (3.64) and (3.65) into the above equation yields

S(f% = [Sin (lrT)
2

sin 2(rfT) (3.67)
-r2 f 2T

This equation for the power spectral density is illustrated-in Figure 3.3. This expression agrees

with the power spectral density for the random binary transmission presented by Papoulis (14:341).

T-

S(f)
T
2

3 2 1
Frequency, f

Figure 3.3. Random Binary Transmission PSD

3,2.2.2 Boxcar Spectrum The special case of the boxcar spectrum is studied here. The

spectrum considered here is the spectrum of the output of a boxcar generator (more commonly
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referred to as a sample-and-hold circuit). The -.utput of the boxcar generator is a series of square

pulses with random amplitudes, distributed according to p(a), and with constant width T. The

Fourier transform of a single, unit amplitude square pulse of width T is

G(f) = T sin -ST (3.68)
rfT

As was the case for the random binary transmission, the pulse width is a fixed value, and the

deviation, c, is distributed according to

p() = () (3.69)

which implies that 4),(f) = 1. Substituting this value for (%(f) and Eq ( 3.68) into Eq (3.62) the

power spectral density becomes

S) = T ( 2 ( E2 (a) + (a)o (f- (3.70)
rfT )n=O

The following relationship exists for various values of R.:

sin -rT J1 ,n=O (3.71)
irfT i= , n=1,2,3,...

The above relationship implies that the delta function in the equation for the PSD only applies

when f = 0. Therefore the PSD is written

S(f) = 511 irfT [E(a2 ) - E2(a)] + E2 (a)6(f) (3.72)
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where E(a2) - E2(a) is recognized as the variance of the amplitude a. This spectrum agrees with

the power spectrum for this case as presented in Lawson and Uhlenbeck (11:274).

3.3 Pulses with Random Amplitudes, Durations, and Phases

In the previous section, the power spectral density of a series of pulses with random amplitudes

and durations was developed. In this section, the power spectrial density for the more general case

of a series of pulses with random amplitudes, durations and phases is developed. The development

here follows closely that of Lawson and Uhlenbeck (11:44-46). A single pulse is defined by the

expression a,, 2e j7r t. Further, the phase will change for each pulse, with p(a) the probability

dcnsity function of the phase, ak. Therefore, at the following times the pulse y(t) is defined by

tl : y(t) = aej2
7

(
f

°
t
+ a j

)

t2 :y(t) = aei2r(f
°t+a1+a2)

t" y(t) = ane32 (fo+aI+02+ ' +an) (3.73)

where the ak's are real, statistically independent random variables distributed with PDF p(a). The

amplitudes have the following joint expectations:

E(a 2) ,k=t

E(akal) = E(a) , k=l (3.74)
r,

2 (a) , k$l1

The length of each pulse is distributed according to the PDF p(l) and is defined by

L. = the spac-'ag between times tk and tk+1 (3.75)
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so that the time of occurrence of the kth pulse is

tk = tI + l1 + 12 +. + lk- (3.76)

An example of a series of pulses with random amplitudes, phases and spacing is illustrated

in Figure 3.4.

11--l 
1

: 2---a3 313 h*--L"- l5

12 a3 1 -4 1

Y(t) 0(-) - Time, t

a2 L ((2) a ) (as) Time, t

a4

Figure 3.4. Series of Pulses with Random Amplitudes, Phases and Spacing

Some useful relationships presented by Lavson and Uhlenbeck are expanded here (11:45):

S- J p(ka)ei2dda = A + jB = E(ej P ) (3.77)

" "- 0 P(l)e-j 2-(Uf-°)d! -- 0(f) + jO(f) = E(e-jw') (3.78)

7 = p(ld = E(I) (3.79)
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where

,6,= 27ra,,

w, = 2-r(f - fo)

Some relationships involving 92 are presented here. Using Eq (3.76)

E(dw-ik) = [E ++ 1+'++-)]

_ oco'E [dWC(I1+12+o+..._)]

- '(3.80)

since the 1,,'s are statistically independent. Further, the expectation of the conjugate of the previous

equation is

E(e-ijWck) = Z[(ej2W.I)*]

= ewc,(a 2 *)k-  (3.81)

Finally, combining Eqs ( 3.80) and ( 3.81) the following relationship results:

1 , k=I

E[ = (')l-k , k < 1 (3.82)

Qk-t , k>l

Likewise, some relationships involving 0 are presented here:
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E [I(P,+P2+"'+P)] = ek (3.83)

since the as,'s and therefore the 3,,'s are statistically independent. Now combining Eq (3.83) with

it's conjugate, the following relationship is arrived at:

Ij k=I

E L <1 (3.84)

ek-G , k>l

A single pulse from time t k to time t k+I is expressed as

y(t) = ate 2 x(f ~t+a I+a 2+'' '+a k)  (3.85)

The Fourier transform of this single pulse from t k to tk+l is

Y(f; ti-k+l) = ake)(PI+P2+'"+Pk) e-j27r(f-1f)tdt
dtk

= - ak ej(P1+-+"+P)(e- o-t+l - e- jwctk) (3.86)
3Wc

A finite series of N pulses from time t, to tN+l is

N

YN(t) = akej27(ftt+cI+a2+'"+Ck) (3.87)
k=1

and the Fourier transform of this series of pulses is
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N

YN(f) = cl" Zake(pl+p2+...+Pk)(e jwctk+ - e_£wtk)
k=1
N

1 A k  (3.88)

3WC k=1

where

Ak = akej(PI+P2+'+Pk)(e - j Wc k+I - e - j wctk) (3.89)

3.3.1 Power Spectral Density The average power spectral density of the series is developed

here. The average PSD is defined by

St(f) = N J Nr YN(f)12  (3.90)

where N7 is the average length of N pulses.

The square of the magnitude of the Fourier transform is

1N NIYN(f)l = 7 N AN A*

k=1 1=1

= 12 A.I 2 + E E (Ak+IAk. + A*k+,Akl

Ce n= 1 k= 1 =1

1 IAI 2 + 2Re E E Ak+lAk) (3.91)
C. n=l =l /=1/

since Z + Z* = 2Re(Z). Using Eq ( 3.89) the first summation in the above equation is
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N N

E IAn j2 = E { ae(1P++R (ewctt+I - eijwcifl
n=1 n=1

x anCP+++P)(eiwctn+1 - eSwctn)]}

N
= E [an (e-Wctn+, - e-w1n) an (Jwct,+,- ejwctn)]

n=1
N

-(3.92)
n=1

The expected value of this summation is

E (~ NI12) N 2 a [2 - ej.t~- -iC~n+1)}(93
n=l n=1

N
= >E(a 2) {2-B[ewnii) [,eiw.(tn+l -t)]} (34
n ----1

Using Eq (3.82) this expectation becomes

S IA.I EE(a ) (2 -Qa-Q-2) (3.95)

n1 n=1

Since 0 + 0 * = 2Re(2)

B , IAn 2 NE(a2)[ - 2Re(Q)]

- 2VE(a2) [1 - ¢(f)] (3.96)

Using Eq (3.89) the terms inside the second summation are
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A.AL = [ak+,e iP1+P2+-.+Pk4+eI CjWct+l+x - eijWcik4I)

x [a;kei(3+P2+"'+Pk)(ewctk+1 - eiwctk)

= ak+Iak ei(Ph + I+Pk+2 ++Pk+1 )

X [CjW'(tk-tk+I) - eiwc(thkik+1+1) - e.tklki)+ ejW.ctk+1.tk+1+1)] (3.97)

The expected value of this term is

E(Ak+,AL*) = E(ak+,ak)E [d (Pk+i+Pk+2+"'+k+t)] { E [eiWc(Itk+0 I

-E [ ]- -, [ d ~+1Ik~) +f [a (ewck+1'-t;+I.L)] 1 (3.98)

By using Eqs ( 3.74), ( 3.82), and (3.84) this expectation can be expressed

E (Ak+,A*L) = E2(a)9D' (Q2' - Q'+1 - 01-1 + n') (3.99)

E(A;.+lA~k) = , 2(a) [2(E2E))' - P(QE)'l - (e (3.100)

The summation of this expectation is

E (N-1 ' N-k ) E2(a)55 [2£O) 2(2)''PG' (3.101)
kk=il1=1 L = £'

Let ~y = (00e). Now, the summation can be written
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N-k N-k-1

E , I  -  E ym+ l

-=-I tn=O
N-k-i

- 7 7m

m=O
- 7 ( "YN-k) (3.102)

1-7

The expectation of this summation now becomes

I-iN-k N-1i Y
E( E ,y'. E'a - *(

=lAk+A) = E 2(a) k=l 1- -

= z'(,,) 22- 91- E (I- -)
k=l

-E2 (a)[2(2- 91)- (1 N

S N1  1 + 2Q -

-E 2 (a) 1 (1 _ g2) 2 [N 1 (1 -N-,)] (3.103)

Substituting Eqs (3.96) and ( 3.103) into Eq ( 3.91) the square of the magnitude of the

Fourier transform becomes

,y (f)12  - L{,{(a 2) [1-

-2E 2 (a)Re (1 _ D)2 N - 1 - I (I - (3.104)
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Using Eq ( 3.90) the power spectral density is obtained:

l= {E(a2) [1- - .a)Re [1 ---- (1- 0f)2] } (3.105)

st77)" = -f()- I)I

The above equation for the power spectral density can be quite useful in the given form,

espe:ially when the terms e and 92 are real quantities. However, this equation can be expanded as

a function of the component parts of e and 92. The coefficient of the E 2(a) term can be written

Re [1 (1- _Q)2 = Re [e (1- n)2 (1- )2e)]R, [1_- (1- n11 - 01_ o

= N (3.106)

where

N = the numerator

D = the denominator

Using Eqs ( 3.77) and ( 3.78), the denominator in the above equation, D, can be written

D = nI- EI 2

= (1- n2)(1 -nE)*

= {(1 - AO(f) + BO(f)] - j [A¢(f) + BO(f)]}

x {[1 - AO(f) + BV,(f)] + j [A4(f) + BO(f)]}

= [1 - AO(f) + BO(f)] 2 + [AO(f) + BO(f)] 2  (3.107)
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The components of the numerator are expanded here:

(1 _ - [1-0(f)-j(f)]2

- [1 - 20(f) + 0 2 (f) _ 02(f)] - j2b(f) [1 - 0b(f)]

0(1 -n)2 = (A + jB) { [1 - 24(f) + 0 2(f) - 02(f)] - j20(f) [1 - O(f)]}

= {A [1 - 20(f) + 0 2(f) _ 0 2(f)] + 2BO(f) [1 -O()])

+j {B [1 -20(f) + 0 2(f) - 02(f)] - 2AO(f) [1 - O(f)]) (3.108)

(1 - Q(O)" = {1 - [O(f) + j(f)] (A + jB)}*

= [1 - AO(f) + BO(f)] + j [A4(f) + Be(f)] (3.109)

Substituting Eqs ( 3.108) and ( 3.109), the expression for the numerator, N, can be written

N = R[0(1- )2(1-ao)"]

- [1 - Aq(f) + BO(f)] (A [1 - 20-(f) + 02(f) _ 0 2(f)] + 2BO(f) [1 - O(f)]}

- (AO(f) + BO(f)] {B [1 - 2i(f) + 02(f) _ 0
2 (f)] - 2A(f) [1 - O(f)])

= [1 - 20(f) + 02(f) - 0 2(f)] [A - A 2 (f) - B(f)]

+ [1 - 0(f)] [2BO(f) + 2B 202(f) + 2A 2 0 2 (f)]

= [I - 20(f) + 0 2(f) - 0 2(f)] {A - 0(f) [A 2 + B2]}

+20(f) [1 - 0(f)] {B + 0(f) [A2 + B 2] } (3.110)

Substituting Eqs ( 3.107) and (3.110) into Eq ( 3.106), and after some simplification, the

power spectral density becomes
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1
SY M) f 2,2/ ) E(a2) (1 E2 )-E(a)

- 2l, 2(f -fo)2It

x (1-20+¢ 2 -_2 ) [A- 0 (A2 + 12)] + 20(1-- 0) [B + } (A2 + B2)] (3.111)x(1 - AO + BO) 2 + (AO + BO) 2 I

where the 0 and 0 terms are in general functions of frequency, f. The above equation does not

reduce as elegantly as the equation presented in Lawson and Uhlenbeck (11:45). This is du-. to

the introduction here of random amplitudes, while Lawson and Uhlenbeck only consider random

phases and pulse spacing.

3.3.2 Special Cases The power spectral density presented can be a very useful tool to derive

the power spectra of various waveforms. Two special cases of random waveforms are considered

here. First, the PSD for the random binary transmission is derived. Finally, the power spectra for

the random telegraph signal is developed.

3.3.2.1 Random Binary Transmission The special case of power spectral density of

the random binary transmission is derived here from the general case of the PSD of a series of

pulses with random amplitudes, spacing, and phases. Since the random binary transmission is a

baseband process, fo is set to zero. Two methods to achieve this PSD are illustrated here.

First, the amplitudes are assumed to have equally likely distributions as follows:

__1

P(a =1) = P(a = -1) = 1 (3.112)

which is the same as

p(a) [6(a + 1) + 6(a - 1)1 (3.113)
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so that the expected values are given by

E(a) = 0 (3.114)

E(a2) = 1 (3.115)

The phase will be assumed to be a constant value of zero. This is because the random amplitudes

account for a phase change of either 0 or -r radians (with an equally likely distribution). Substituting

the above expectations int Eq (3.105)

S(f) = [2 - ¢f)](.SM (3.116)
27 ,2f2

For the random binary transmission, the pulse spacing is a constant value, T, so that

p(l) = b(6 - T) (3.117)

and 7 = T. Next 0(f) is derived from p(l) by use of Eq ( 3.78) as follows:

= +(f) +j(f)

= ~ p(t)e-j2 rf dl

- p(l) = b(1 - T)e-j 2 'lf dl

= cos 27rfT + j sin 2-rfT (3.118)
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Now, 0(f) = cos 27rfT, and the PSD is now

(1 - cos 24fT)
2Tir2 f 2

2 sin 2 ?rfT
- 2Tvr2f 2

T sin 7rfT' 2  (3.119)
( rfT )

which is of the same form as the PSD of the binary random transmission presented by Papoulis

(14:341). This power spectral density is illustrated in Figure 3.3.

A slightly different method will be demonstrated, which yields the same result. In this case,

take the amplitudes to be a constant value, so that

E(a) = E(a 2) = 1 (3.120)

and let the phase changes be either 0 or 7r radians, with equal likelihood, so that

pba) + b 6 (a- (3.121)P(Ce) = 1 1@ 01

From Eq (3.77) the value of 0 is derived:

0 = J p(a)ei2 ' ada

Jf [&(c) + 6 (a - ) e) 2rada
2L

= 0 (3.122)
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and A = B = 0, so both Eq ( 3.105) and Eq ( 3.111) reduce to

Sf) = [1 - (3.123)
21ir

2f 2

Since the probability density of the pulse spacing, p(l), has not changed, the PSD reduces to the

form of Eq (3.119).

3.3.2.2 Random Telegraph Signal In this section the PSD of the random telegraph

signal is derived. This waveform is defined by Papoulis as a point process with an underlying

Poisson distribution (14:288-290). This process is a baseband process, so the frequency fo will be

set to zero. The interarrival times of this point process will determine the pulse length, 1, for the

case considered here. The interarrival times of a Poisson process are shown by Davenport to have

an exponential density (3:471). Therefore, in this case the probability density, p(Q), is given by

P(l) = Ae-" I > 0 (3.124)

For the random telegraph signal, the pulse amplitudes transition from +1 to -1, and vice

versa, at each interarrival time. Therefore, one way to view the distribution of the amplitudes and

phases is to set

E(a) = E(a 2 ) = 1 (3.125)

and the density of a to

From Eq ( 3.77) this leads to
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0= A+jB

-jp(a)e2dr

= -1 (3.127)

so that I = -1 and B = 0. Substitution of the above expressions into Eq ( 3.111) yields the power

spectral density of the signal:

SW = 1 [ (1-20+ 2- _ j) (-I - ) + 22 (1- )

27r 2f 2 [ -(1+0)2+,02
1 [ 1 _ 0 2 _ ,02¢

-72f2[(1 +0)2+ 2](3.12)

From Eq ( 3.124), the following expectation results:

= j IAe-Atdl

1 (3.129)

And, from Eq (3.78)

= € j

= j p(I)e - j 2 "J'd
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00

A (3.130)

AT+ jw

where w = 27rf. n can be broken onto its component parts as follows:

A2  AwA2 +W2  3 A2.w2 
(3.131)

Substituting the above into Eq ( 3.128), the PSD is obtained:

1 + __\2 __+ A2 2  1s(w) = 4 I 1 - -QA2+W2  (,\2+w2)2

4A [(2 + W2)2 +_ -\2W2

W2 (2,\2 + W2) 2 + A2w2 ]
= -4A4 + 5A2W2 + W4

4A
4A

2 + w
2

4A
S(f) = 4 f) (3.132)

4A2 + (2-,f)

This equation for the power spectral density is illustrated in Figure 3.5.

This expression is the same as that given by Papoulis for the power spectral density of the

random telegraph signal (14:341).
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0-

Frequency, f

Figure 3.5. Random Telegraph Signal PSD

3-36



IV. Probability Densities and Expectations

The probability density functions of the noise waveform and the signal plus noise waveform,

along with the power spectral density, are one of the most important properties required in the

analysis of the effects of noise jamming on radar receivers. The PDF describes the distribution of

the amplitude of the noise jamming waveform. In this chapter the probability density functions of

the amplitude of the output of both a linear and quadratic detector are derived. These PDF's are

derived for the case of a noise only input as well as the case of the input of signal plus noise. Lastly,

several expected values are derived. The mean and mean square values are determined for the two

cases: noise only and signal plus noise. Also, the autocorrelation function for the signal plus noise

case is derived for both detector types.

.4.1 Probability Densities of the Output of a Linear Detector

In this section, the probability density functions for the output of a linear (envelope) detector

are developed. The PDF's will be derived for the case of the input of noise only as well as the case

of a signal plus noise.

4.1.1 Probability Density for Noise Only The noise analyzed here is assumed to be white

and have a Gaussian distribution with mean value of zero and a variance of 0"2 . This noise, n,(t),

is input to the IF filter, whose transfer function is H(f). The noise output from the IF filter, n(t),

can be portrayed in quadrature form as

n(t) = n.,(t) cos 2rft + ny (t) sin 2-rft (4.1)

where

f, = the center frequency of the IF filter passband
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The noise components n-,(t) and ny(t) are independent, zero mean Gaussian random variables with

PDF's

p(n-) = exp n.- (4.2)

p(ny) = 72, exp - (4.3)

where

W=a2j III(f)l df (4.4)

Because these two noise components are statistically independent, their joint PDF, p(n,, ny), is

1 ( n2+n2\

p(n,, ) = -exp •- 2W (4.5)
T' W 2W

The output of the linear detector, L(t), is the envelope of the input signal, defined by the

expression

L,(tW = n(t) + n2(t) (4.6)

where the subscript n is to denote the noise only condition. The terms n. and ny can be transformed

to polar form in terms of L, and 0, where

nx = Ln cos ,, = h, (L,¢,t ,0) (4.7)

ny = L. sin 0. = h2 (L., 0,,) (4.8)
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The Jacobian of this transformation is

Oh. Oht

OL OhnJ 8Ln 00 49

which reduces to

J = Ln cos2 O + Ln sin2 O

= L, (4.10)

The joint density of Ln and O, can be derived from the joint density of n, and n, by the equation

p (Ln, On) = p, [h, (L., 0.), h2 (L., q.)] J

( Lncos 2  +Lsin2  "
= 2 wexp 2W sn)

- -exp(L) (4.11)

From the joint PDF, the marginal PDF of the envelope, p(Ln), can be obtained by integrating over

all values of On so that

p(L=) - p(Ln, ,r)d€.

= 1 L exp - de-

= (exp (4.12)
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for all values of Ln > 0. This probability density is known as the Rayleigh PDF and is illustrated

in Figure 4.1.

Rayleigh PDF

1
7W

p(L.)

Detector Amplitude, Ln

Figure 4.1. PDF of Noise Only for a Linear Detector

It can be shown in a similar manner that the phase term, €,,, is uniformly distributed over

the interval (0, 27r), and that Ln and 0n are statistically independent random variables.

4.1.2 Probability Density for Signal Plus Noise The PDF for a signal plus Gaussian noise

will now be derived for the case of a linear detector. It is assumed that the signal and noise are

added together prior to the detector, and that the signal is

s(t) = ae(t) cos 2,rft + l(t) sin 2,rfet (4.13)

so that from Eqs ( 4.1) and ( 4.13) the input to the detector, e(t), is

4-4



e(t) = s(t) +n(t)

= [ce(t) + n.(t)] cos 2rf:t + [f(t) + n,(t)] sin 2rfot

= x(t)cos2-rfct +y(t)sin27rft (4.14)

where x(t) and y(t) are independent Gaussian random variables. Since n-(t) and ny(t) are zero

mean random variables, it follows that the means of x(t) and y(t) are notv

E[x(t)] = e(t) (4.15)

E[y(t)] = (t) (4.16)

and the variance of each is W, as was the case for noise only. Now, the joint PDF of x and y can

be written:

P(X y) = - Wexp (x 2w,+ ( (4.17)

This density can be transformed into polar form in terms of L,+, and 0,+,, as was done for the

case of noise only, using the equation

p(Ls+n, Os+n) = px,y [h1(L.+n, 0.+), h2(L.+,, ¢3+n)] J (4.18)

4-5



where

h (L,+., 0,+.) = Ls+. cos s,+n

h2(Ls+n, s+n) = L,+, sin s+n

J = L,+,

This leads to the joint density

p(L,+., s+n) = Ls+nW exp (L+n COs +n - a) 2 + (L,+n sin 0,+n- #)2

L nr ,+, - 2L,+,, (ecoso,+., + )sin ,+,,) + a2 +#2 (4.19)
= 27rW I 2W 2

To arrive at the PDF of the amplitude of the detector output, p(L+,,), the above joint PDF is

integrated relative to 0,+. over the interval (0, 2,r):

p(L,+.) = j p(Ls+I .€+n)dos+n

= 1 27Ls+exp [ L+- 2L,+ (acos 0,+,+psin s+.) + a 2 +P 2] doS+n= p, 2W

L= + ( L +,,+a 2 +6 2 "

2rW exp 2W

x0 27 exp (a cos 0,+,, +P sin O,+)] do,+n (4.20)

The integral in the above equation is of the form of Eq (3.937,2) found in Gradshteyn and Ryzhik,

and reduces to (8:488)

2 ' exp - (acos0,+. + 3sin ,+.)] do,+.=248 I (La-+ -V2#2 (4.21)
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and upon substitution of the above equation into Eq (4.20), the PDF of the envelope now becomes

p(L,+.) = ( 3 ) [22 W (xp 2-W)]

= T exp . a ) 1. (v -p) (4.22)

for L,+n .> 0. The term I, in the above equation is the modified Bessel function of order zero. This

expression for the probability density is known as the Rician PDF. The Rician PDF is illustrated

in Figure 4.2, similar to the form of a related plot found in Lawson and Uhlenbeck (11:154). Two

values of z = (a 2 + p1
2)/2W are plotted in Figure 4.2.

Rician PDF

7-

z= 1/4

.4

z 4

p(L,+.)

.2

7w

1 2 3 4 5
Normalized Detector Amplitude, L,+,/xi2-W

Figure 4.2. PDF of Signal Plus Noise for a Linear Detector

DiFranco and Rubin pro-,idc uscul approximations for to cascs of thc modifcd Bcsscl func-

tion. For the small argument case (5:344)
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x
2  

x
4

+- + . < (4.23)

and for the large , -oument case (5:341)

Io(X) = 1 + X > 1 (4.24)
vr2-7x 8x .. /

4.1.3 Expected Values The expected values of L and L2 for the noise only and signal plus

noise cases are derived here. Also, the autocorrelation function, TjL2 for the signal plus noise case

is approximated. First, the case of the average value of the envelope of the noise only output is

considered. With the PDF of L, given by Eq (4.12), the average value of the noise amplitude is

given by

E(L,) = Lnp(Ln)dLn

= . -exp( 21 dLn

2a rL 2 -- dln (4.25)

where

a -2

The above integral is of the form of Eq (666) in the CRC .5tandard Mathematical Tables (16:465).

Using this relationship, the expectation becomes

E(Ln) '- -1 -r (4.26)

Next, the expected value of L2 is calculated:
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E(L') = LOLP(L)dL,

= i f .exp 2W dL,Jo 2w/ L

1 f00 a

2W j0 aexp (-a ) da (4.27)

where

a =L

da = 2L,,dL,

This integral is of the form of Eq (661) in the CRC Tables (16:465). After substitution, the

expectation becomes

= 2W (4.28)

Now, the expectations for the signal plus noise case are derived. With the PDF of the signal

plus noise output given by Eq ( 4.22), the expectation of L,+, is

E(L,+.) =- L+np(Ls+,)dLs+n

n exp ( L+1 +a .a 2 -/0)o dL,+, (4.29)

The integral in the above equation is defined in Lawson and Uhlenbeck by the following expression

(11:174):
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2 t r____ 22
__J ilI1(at)e-P t 1;-- 430)ror 2p'r(v+ 1) x 7F 2 + p2 .

For the case of v = 0, the above equation becomes

00 r ( P2) /a' a2j i-lIo(at)e-P"dt = exp '' 1 (4.31)

where 1FI(a, b; z) is the confluent hypergeometric function, defined by (11:174)

a a(a + 1) z2  a(a + 1)(a + 2) z 3

T b(b A- 1) 2! b(b + 1)(b + 2) 3! '

Using the integral relationship of Eq ( 4.31), the expectation, E(L,+,), becomes

12 + P2 2 F ([ ) (2W), (a2+p2 1 a + #2

E(L+,)2W 2 exp -1 . (4.33)

From the CRC Tables Eq (605), r (Q) = 2 (16:460). With this relationship, the expectation can

be reduced to the following expression:

E(L8+.)= W -I F ,1  ; 1 -2' +W) (4.34)

Lawson and Uhlenbeck provide an asymptotic approximation for lF1 (a,b;z) for large negative

values of z (11:174). This approximation is
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r(b) _~ -b+__ 1)___ a(a +1)(a - b+1)(a -b +2)] (.5

In the above case for E(L,+,,), where z 2 +2,the confluent hypergeometric function becomes

\(I1 1 *..L (4.36)

H r +2)6z2 +

By keeping only the first term of the expansion, and substituting into Eq (4.34) the average value

of thle detector output is approximated by

F rw r(l) ja
2 +f 2

E(L3 LT TV r~ 2W

[,'rW 2 /C2 + P2

V 277rV 2W

Va2 -+P2(4.37)

Now, the expected value of L,,, is derived. Using Eq ( 4.22) the expectation is written

E(LS~n) = I L~PL+)I,,

= J0 L3,. ep( L2W+C2+ 2)1 (L+n Vfce T jr) dL8,+- (4.38)

From Eq ( 4.31) the mean squared value becomes
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e2 + P2 F-'2)4W2  (a 2 +___a2+__E(L'+n)" = -exp , -!2 -/21,~r/)42 exp \e v '1I (1
\s~ T - e(- 2W 2 ep 2W / '2W j

= 2W 1  1, 1;- +P2  (4.39)

It follows from Eq (4.32) that the confluent hypergeometric function in the above equation reduces

to

1F1 (-1, 1; z) = 1 - z (4.40)

Therefore, the mean square value becomes

E(L'+n) 
=

= 2W + o2 + f 2  (4.41)

The last expectation considered for the linear detector output is the autocorrelation function

of the amplitude for the case of signal plus noise. First, the joint PDF of x1 , Y1, X2 and Y2 is

required. The subscripts refer to the times ti and t 2 respectively. This PDF is a four-variate

Gaussian of the general form

p(X) = [(27r)' IV1'] -'exp [ (X - m)TVl(X - mi)] (4.42)
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where

n=4

Xi a

Yi 1

X2 C2

Y2 A2

V is the covariance matrix defined by

1 0 p 0

o 1 0 p
V=W (4.43)

p 0 1 0

0 p 0 1

which follows from the fact that the xi and yj terms are uncorrelated, but x, and X2 are not

uncorrelated. Likewise for yi and Y2. The term, p, is the normalized correlation coefficient defined

by

= cov(zi, Xj) (4.44)

U(xi)a(x1)

As Lawson and Uhlenbeck point out, the equation for the normalized correlation coefficient in this

case can be written in terms of the IF filter transfer function, H(f), as follows (11:155):

fc0IB(o12cs2,fd

p(r) f -  I(f)cos2frdf (4.45)
f J, IH(f)12df

where

7 = 2 - t
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The above leads to the following equation for the joint PDF of xl, YI, X2 and y2:

p(xl,yl;z2,y 2 ) = 4-r2 W 2 (1 p2) exp 2W(1 - {p2) f - ) 2  (yi-P')2 +(x 2 -a2)2

+(Y2 _ #2)2 - 2p[(x, - 0,)(X2 - C2) + (y, - 1)(y2 - P92)]}} (4.46)

Now the autocorrelation function can be derived:

=IL E [(F/', +,) ( ~+ y2)]

=~2 +1 1J~(x+j) ( X/2 i+Y2) p(XI, Yj;X 2, Y2)dxldyldX2dY2 (4.47)

The integrals in the above equation can not be solved exactly. However, Lawson and Uhlenbeck

provide two approximations for these integrals; one for the small signal-to-noise ratio case, and

one for the large signal-to-noise ratio case (11:156-157). For the small signal-to-noise ratio case the

autocorrelation is approximately

LIL2 ~ ~ ~ ~ ~ . +- 2WIal I+4W 2 + 4W)

+4Wp (,1C2 + 182) + 4w 2 p2 ] (4.48)

and for a large signal-to-noise ratio the autocorrelation is approximated by
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Otl 0e2 +{ 919 2

TjT1 1 [2r+3)cr+3 ~W [(a2 #)+ #21]1

W 2p 2  (a1C(2 + p1/2) 2  (4.49)
2+ a2 + #2) (9

4.2 Probability Densities of the Output of a Quadratic Detector

The PDF's of the output of a quadratic (square-law) detector are developed in this section.

As was the case for the linear detector, the PDF's for both noise only and signal plus noise are

presented here. The output of the quadratic detector, Q(t), can be thought of as merely the square

of the output of the linear detector. For this case, Papoulis gives an expression for the PDF of the

output of a square-law detector for y = ax 2 :

P!y!)\j4x I)+ GV )](Y) +P- (4.50)
21a- [p- (n/ +a (-n / ] U(y) (.0

where

px(x) = the PDF of the random variable x

U(y) = the unit step function

Since the PDF's p(L,) and p(L,+,,) are non zero only for L > 0, the PDF of the output of the

quadratic detector, Q(t) = L2 (t), can be written

P(Q) = 1 PL (4.51)

This result will be used to derive the PDF's for the quadratic detector. As before the signal out of

the IF amplifier is given by Eq (4.13) and the noise process is given by Eq ( 4.1).
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For the case of noise only, the PDF for the linear detector was given by Eq ( 4.12). After

applying Eq ( 4.51), the PDF for the output of the quadratic detector for an input of Gaussian

noise only is

p(Q - 21  PL- (V)
= ~ 1" exp-

1 2exp (_ ) (4.52)

which is only non zero for Q,, > 0. Therefore, the output of the quadratic detector has an expo-

nential probability density. This PDF is illustrated by Figure 4.3.

Exponential PDF

2W

p(Q.)

0
Detector Amplitude, Q,,

Figure 4.3. PDF of Noise Only for the Quadratic Detector

A similar approach is taken for the signal plus noise case. By applying Eq (4.51) to the PDF

of the signal plus noise given by Eq (4.22) the PDF of the signal plus noise output of the quadratic
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detector p(Q,+,) is obtained:

Q.= , + pa2. #

= 2 Texp ( 2 w Iok.WV+)

exp Qs+n + a + /) V P (4.53)= 2Wep 2W o -'W-- " --

Figure 4.4 illustrates this probability density function for two separate values of z = (ce2 +/32 )/2W,

similar to to plot of the PDF for the case of the linear detector, Figure 4.2.

.2
7- z= 1/4

p(Q,+.)

5 10 15 20 25
Normalized Detector Amplitude, Q,+n/v2-'W

Figure 4.4. PDF of Signal Plus Noise for a Quadratic Detector

4.2.1 Expected Values The expected values for the output of a quadratic detector are pre-

sented in this section. The expectations of Q and Q2 for the cases of noise only and signal plus

noise are derived. The autocorrelation function for the signal plus noise case, QIQ2, is also derived.
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The expectations for the noise only case are considered first. With the probability density of Q.

given by Eq (4.52) the average value of the quadratic detector output with only a noise input is

E(Q.) = QOp(Q.)dQ.

= 21 exp (- dQ (4.54)

The integral in the above equation is of the form of Eq (661) from the CRC Tables (16:465). Using

this equation for the integral, the expectation becomes

1 W 2
E(Q.) = W(2W)

= 2W (4.55)

Next, the mean square value of Q,,, E(Q2), is calculated from the PDF given by Eq ( 4.52):

00
E(Qn) = Qnp(Q,)dQ,

= -. exp - )dQn (4.56)

Again using CRC Eq (661), the mean square value is now written

E(Q2) = 1(2W)3

= 8W 2  (4.57)
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Now the case for signal plus noise is considered. The PDF of the amplitude of the output of

the quadratic detector when the input is signal plus noise, p(Q,+n), is given by Eq ( 4.53). This

leads to the expected value of Q,+n:

E(QI+n) = Qs+np(Qs+,,)dQs+,,

= -- xp( . , V

1 exp t +# 2 )J t3 exp ( 2I. Io (I a- P2) dt (4.58)
W 2W )JO (2

where

dt= 1 d

From Eq (4.31) of Section 4.1.3 the expected value becomes

E(+,+, - 1 ep /a 2 +3 2 \ r(2)(2W) 2 /p a 2+ (-+ a'2+2

W (- 2 W) 2 xp 2W 2 W

= 2W1 F 1  1a2 + 2 ) (4.59)

where r(2) = 1 since r(n) = (t - 1)!. From Eq ( 4.40) in Section 4.1.3, the hypergeometric

function in the above equation reduces to the form (1 - z). Therefore, the expected value of Q8+n

is

E(Q,+) 2W1+a 
2
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E(Q,+) = 2W + , + f 2  (4.60)

Now, the expected value of Q~s+n is derived here. From Eq ( 4.53), the mean square value is

E(Q2+.) Q2E(Q~s+ f = s+np(Q,+n)dQ,+n

=x ) (" (~na+2  1 Q- c,+2 Q+

S 2 + P2) 00t -(
S+ pexp (xp L ,-± /+ )di (4.61)

where

dt = ' d

As before, from Eq ( 4.31) the expected value of Q2+n is

1 a o
2 + 82  r ( exp rr(2+22)1 F1/2,+1; ( 2 1 2+ 2

+n)= C ) [,

- 2 , ;P 2 ) (4.62)

The confluent hypergeometric series in the above equation can be expanded to a finite series using

Eq ( 4.32) from Section 4.1.3. This expansion is as follows:

z2

±F 1~l(-2, 1;z)=1 - 2z 2 4.3

This expansion leads to the following form of the mean square value of Q,+,,:
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E (Q 2 +) - 8W 2  1 2 + W 2  + + # )

= 8W 2 +8W (, 2 + , 2) + (e 2 + p2) 2  (4.64)

The last expectaticn to derive is the autocorrelation function of the output of a quadratic

detector. The autocorrelation function is given by

Q1Q2 = "" (x + y1) (a + 2 ) P(xI,Yi;X2, y2)dxldydx2dy 2  (4.65)

where p(x1, Y1; x2,y2) is given by Eq ( 4.46). Lawson and Uhlenbeck provide the solution to these

integrals (11:155). The autocorrelation function of the output of a quadratic detector resolves to

Q1Q2 = (al I + 2W) (a + 2 + 2W)

+4Wp(ai ,2 + P1,62) + W 2 p2  (4.66)
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V. Effects of CW Interference

In- this chapter the effects of single frequency or continuous wave (CW) interference are

explored. First, the effects of CW interference on a linear detector is analyzed. Finally, the effects

on a quadratic detector are determined. This analysis closely follows the analysis presented by

Lawson and Uhlenbeck (11:347-353). For this analysis, a square radar pulse is assumed with pulse

width r and amplitude S. The pulse is defined by the expression

Ssin (27rft + 0,) it< (s(t) = 2(5.1)

0 , elsewhere

where

f, = signal frequency

0, = random signal phase

It is further assumed that the signal frequency, f,, is centered in the IF filter passband.

The OW interference is represented by E(t):

E(t) = Esin (21rfwt + 0,) (5.2)

where

= OW interference frequency

0 = random I ase of the OW interference

It is assumed that the voltage of the OW interference, E, is much greater than both the signal

voltage, S, and the average value of the noise voltage. The input-to the IF filter (neglecting thermal

noise) is the sum of-the pulsed signal and the OW interference. Let sin(t) be the IF filter input:
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Sn = J Ssin (2frt + Os) + Esin (27rft+ Ow) I It! < 2 (5.3)( Esin (27rf 0,t + O,) , elsewhere

It will be convenient to put sin(t) into quadrature form in terms of the center frequency, f,, so that

Sin(t) = a0 (t) cos 21rft + 8io(t) sin 27rf, t (5.4)

For.ItI < Z, sin(t) can be manipulated using trigonometric identities into the quadrature form:

Sin(t) = S(sinwtcosO, t+coswsinO,)

+E [sin (w' + w,) t cos Oe, + cos (w' + w,) t sin 0,,o] (5.5)

where

w, = 27rf

w I = WetWS

sin(t)= S(sinwtcosO, +coswtsinO,)

+E [(sin w't coswst + cosw't sinw,t) cos 0¢

+ (cosw' cosw,t - sin w't sinwt) sin 0.]

= cosw,t [S sin O, + E (sin w't cos Ow + cos w't sin O,.)]

+ sin wt [S cos 0, + E (cos w't cos 0,, - sin w't sin 0,O,)]

= coswt [S sin 0, + Esin (w't + 0,,)]

+ sin w,t [S cos 0, + E cos (w't + 0,,)] (5.6)
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Likewise, when Itl > z the input signal becomes

Sin(t) = cosw, tEsin (Aw' + 0,w) + sinwtE cos (w't + O~w) (5.7)

From Eqs ( 5.6) and (5.7) a0 (t) and #,(t) can be expressed as

aEt sin [27r(fw - f,)t + 0,,] + Ssin 0, Itl <o(t) = 2(5.8)

Esin [2,r((f. - f,) t + 0,,] , elsewhere

V icos[2-r(fc,-f,)t+0,.]+Scos 0, Itl < (o~)2 (5.9)

Ecos [2,r (f,,, - f,) I + gOw] , elsewhere

The analysis by Lawson and UhlcnL-ck assumes that the IF filter has a Gaussian passband.

The transfer function of this filter is expressed as

(_ Lif2
H(f) = exp \ B ](5.10)

where a = 1.18, so that the half power bandwidth of the filter is B. Here, the frequency will be

taken about the frequency f = f 3, which is the center frequency of the IF filter passband. The

transfer function of this filter is illustrated in Figure 5.1 for positive frequencies.

The output of the IF filter, sofa (t) can be calculated by Fourier transform techniques as

follows

Sour(t) = j Sin(f)H(f)e-j2zftdf (5.11)

where Sin(f) is the Fourier transfnrm the input to the IF filter. Sin(f) can be manipulated

through properties of the Fou .-r transfor,.. ."
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Gaussian Filter

1-

H(f) 
72-

2 2

Frequency, f

Figure 5.1. IF Filter Transfer Function

Si.(f) - [A(f - f3) + A(f + .f,)] + 1 [B(f - f3) - B(f + ,)] (5.12)

where

A(f) = f 0o(t)&'2, 1tdt (5.13)

B(f) = joo(-t) -2,f t (5.14)

are the Fourier transforms of a, and 8, respectively. Using Eq (5.12), so,,g(t) can be expressed by

the following equation:
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s1( = H(f) [A(f - f,) + A(f + f,)] j 2 ,f tdf

+- f I(f) [B(f - h8) - B(f + f.)] e'2 ' tdf (5.15)

This expression can be manipulated to the form

sour(t) = cos27rft J A(f)H(f)e2 +df +sin 27rft j B(f)H(f)e 2#itdf (5.16)

= a(t) cos 27rf.t + 3(t) sin 27rf~t (5.17)

where

oe(t) = f A(f)H ()27fidf (5.18)

P3(t) = j B(f)H(f)ej 2
,,ft df (5.19)

By substituting Eqs ( 5.8) and ( 5.9) into the above equations ce(t) and P3(t) become (11:348)

a(t) = Eexp[_a 2 °BJ')0]sin[2-rr(f/,,-f,)t+O,,]+SsinO, Itl< 2 (5.20)
Eexp [- (a '2j)2] sin [2,r (fw - f) t + 0,] elsewhere

{ exp [- ( f.l)2] cos [27r (f,, to- fst + 0"'] + S Coss 0 , Itl <

NO P(1) (5.21)
Eexp [ a

2
(10-f, )2] cos [2-r (f t - + 0 elsewhere
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5.1 Effects of CW Interference on Linear Detection

In this section, the effects of single frequency CW interference on linear detection are analyzed.

Since the CW voltage was assumed to be greater than either the signal or mean noise voltage, the

average output of the linear detector, T, when the input is sort(t), is found from the approximation

of Eq ( 4.37) in Section 4.1.3 to be

L = Ve +02 (5.22)

Using the expressions for a(t) and P(t), Eqs ( 5.20) and ( 5.21), the average value for Itl < Z

becomes

T = [X2 sin2 (w't + 0, ) + 2XSsin(w't + O,) sin 0, + S2 sin2 0,

+X2 cos2(w't + 0,,) + 2XS cos(w't + 0,,) cos 0, + S2 cos 2 0,]

= {X 2 +2XS[sin(w't+ O,)sinO, cos(w't+ Ocw)cosO]+S 2} ' (5.23)

where

'= 2-r(fc. - f,)

X Eexp [-(f "
2]

The above expression for L can be reduced through trigonometric identities to

- = [X 2 + 2XS cos(w't + V,) + S2 ] (5.24)

where

= OtU -0
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It was assumed that the amplitude of the CW interference, E, was much greater than the amplitude

of the signa., S. Therefore, the S2 term in the above equation is negligible and T can just as easily

be written

T= [X'2 + 2XS cos(w't + so) + S2 COS2 (w't + s)

= A' + S cos(w't + Vo) (5.25)

When ItI > 1., S = 0 and T A. This leads to the following expression for T:

EL = exp ~ 2 (f f )2] + Scos [2rfw- f") t+ V] , It I< 2 (5.26)
Eex [ 2 -. 2

, elsewhere

Lawson and Uhlenbeck assume that the video bandwidth, b, is very narrow, so that only

the var,,tion inside of the pulse width, r, needs to be considered (11:349). Therefore, Tis time

averaged over r to yield Li. For the case of the signal present, S $ 0

L = !X+scos(w't+o)dt

= X+ S[sin( +s )sin (-uj' + so)]

=l~ 2~f 2[ Or

X =Eexp a2fw7f)
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Without the signal present, S = 0 and the above equation reduces to L = X. With this, the

equation for L can be written

= Eexp[...a2fc~;I.2 (f, -f,)r
L={ cw+s x

x {sin[('(fc - 4)r + o] + sin [r (f r - 4)r- ] , with signal (5.28)

•~ LwEexe - 7j' , without signal

To determine the effects of the CW interference, the deflection criterion presented by Lawson

and Uhlienbeck is applied. This criterion states that a detection has occurred if the average value

of the deflection for the signal plus noise over the average value of the deflection for noise only is

on the order of magnitude of the standard deviation of the deflection for noise only (11:161). This

criterion in equation form is (11:163)

Ys+N - = k (5.29)

where k - 1. For the case of the linear detector, Ls+N is derived by assuming several observations

are averaged, and that the phase, p, is uniformly distributed over the interval (0, 2-r). Further,

a central limit theorem argument allows the use of a Gaussian density for a large number of

observations of the deflection. The mean of this Gaussian density is L~w+ - L,, from Eq ( 5.28)

and the variance is 2W. Since Lcw+, - L,, will vary between positive and negative values due to

phase fluctuations, the average will be taken over one-half of the Gaussian density. As Lawson and

Uhlienbeck point out, LS+N is defined by (11:349)

{2
Ls+N - - j 2 xexp {W ] dxdW (5.30)
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The derivation of -S+N follows. The Lcw+s - Lew term can be reduced through trigonometric

identities to

S
- r(f - f7)r {sin [7r (fw - f,) r + V] + sin [r (fw - f,) r - WI)

S

,r(h -f, ) sin [-,r (few - f.,) r] cos

- 7cos'p (5.31)

where

. - . , sin [7r (fe, f,) r]

Substituting the above expression into Eq (5.30), gives

1,," f2= < [0 [r (x-..co<,,,,- 1,,,
-S+N = 100 x exp C 2 dxd p

r'W j
2  = (tr,, W+ ,Ycosw) C-eU,/ ud p

0 y0(vrw
- r/2r , -2V

= /-W ue-U2du+ 7cosfpc-'2d dp (5.32)

\ . 2W 2W

where

du dz

The component integrals of the above equation will be solved here. The first integral reduces to

,1 ue- 2 du = (j (co du + u--l du)
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--Wu e-U2 du = V2-W{1 + + x 2

f Fexp( 72 COS) (5.33)

The second integral is nearly of the form of the co-error function, and can be written ill terms of

the co-error function by

0 7cose - u du - cos V (2f e-U 2du2 - V

- 2 rCos verfc(-z) (5.34)2

where

This expression can be reduced to a form containing the error functicn by the use error function

relationships found in the Handbook of Mathemaiical Functions as follows (13:297):

erfc(-z) = 1 - erf(-z)

erf(-z), = -erf(z)

erfc(-z) = 1 + erf(z) (5.35)

With the above relationship, the integral can be written

j 7 cos tpe-udu = cos , [1 + erf(z)] (5.36)
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A series expansion for erf(z), from the Handbook of Mathematical Functions is substituted for the

error function above (13:297):

-fcos we-di, = -2cosw r 2 1n.jv" w n=O

2 L'V'~$~ n!( n +1[ 2 (- 1)" ~ n + 1o
77r n(2n + ] (5.37)

Substituting Eqs (5.33) and (5.37) into Eq (5.32), TS+N can be written

Ls+N = 
2 v/_ !O2 C2 OS2n

E n!(2n + 1) dp

2,O F/2 exp ( 72 C2 ) dOS

+T Co od+ Y CosV'os V -Y 9Cos3 (P+-]]d~% (5.38)
1 2 Jo v12V W 6(2W)i

The argument of the first integral in the above equation can be expanded in a power series of the

form of Eq (1.211,3) of Gradshteyn and Ryzhik (8:22). With this series, the first integral becomes

j-Vr 1 exp ( 2,) t =- ( )
2-W- V12 J k=0 k

= V j2 i Jo 1 '2 C"os') + 8CS W ) d5.39)

Keeping only the terms up to 72, the integral becomes
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2 7r e x p 2 o 2 d a2 7- 2 -- 'r (5 .4 )

The second integral in Eq (5.38) reduces to zero. By keeping only the terms up to y', the

third integral becomes

f2 7r cos cp 73 cos 3  V y I Y cos 2 d V

J os V2W 6(2w) V2W
IT 2

r2-W (5.41)

By substituting the integral results of Eqs ( 5.40) and (5.41) into the equation for Ls+N, Eq

(5.38), Ts+N becomes

Ls+N = (2$ , +

- ff _W1  2 [sin r(fcw_ - M7 r]2 (5.42)
= 4W ,r (f,, - f,), J

The term IN is derived by setting S = 0 in the above equation, so that

TL = F (5.43)

N)w, LS N - Lt is obtained:

5 -2 
2

LS+N - TI 2W r sin -r(f,:. - f,,)7 (5.44)
4-W V r --T I (f,:.- f3 )T
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Because a very narrow video bandwidth, b, was assumed, the above equation is reduced by a

factor of b7 to arrive at the video output:

S+NS2 LN = 12Wr sin -,r(f. -.fsr 2 (L',s+4 - r V 7 L I (fcf -8) J

To arrive at the standard deviation of the CW and noise only, the power spectral density will

first be obtained. The PSD of the CW plus noise is derived by taking the Fourier cosine transform

of the autocorrelation of the output of the linear detector. Since it was assumed at the outset that

the CW power was much greater than the noise power, the large signal approximation from Section

4.1.3, Eq ( 4.49), is used for the autocorrelation function. As Lawson and Uhlenbeck point out,

"since E >> W, the main contribution to the continuous spectrum of the linear detector output

come from the term proportional to p" (11:350). So, the autocorrelation becomes

L1 L2 = Wp(r) a1a2+,9192 (5.46)

[(C,2 + fi?) (a2 +p2,

where a, and a2 are from Eq ( 5.20) with S = 0 at times tj and t2 respectively. Likewise, the ,G

terms are from Eq (5.21) with S = 0. Now, the autocorrelation becomes

L1 L2  = Wp(r) X 2 sin 0 1 sin ®2 + X 2 cos e 1 cos 02

[(X2 sin2 O + X 2 cos 2 E0) (X2 sin 2 02 + X 2 cos 2 02)]
- Wp(r) (sine 1 sine 2 + cos01 cos02)

= Wp(r) cos(01 - 02) (5.47)
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where

X = Eexp [-2(1± ]

1= 27r (f . -f,)tI +Oc

e2 = 27r (f, - h) t 2 + Oc.

With the above relationships, the autocorrelation becomes

LIL2 = Wp(r) cos [2-r (f, - f,) tl - 27r(fe, - f,)t 2]

= Wp(r) cos [2-r (f. - f.,) r (5.48)

Next, the normalized correlation coefficient, p(r), is calculated by the use of Eq (4.45).

p(r) = ffoo. H(f)2 cos 2rfrdf (5.49)

The IF filter was assumed to have a Gaussian passband whose transfer function, H(f), was defined

by Eq ( 5.10). With this equation, the numerator in the equation for p(r) is

JIH(f)I2 cos2-rfrdf = 2 exp B 2  cos 27rfrdf (5.50)

This integral is of the form of Eq (3.896,4) from Gradshteyn and Ryzhik, and resolves to (8:480)

iHj(f)j 2 cs rd = (1 IrB 2  r(~r 2 2
Lw cs 2-rf7-f = 2  2 V - exp [v74(2a-2)]f

= B'exp [_ I ) 2] (5.51)
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The denominator reduces to

L IH(f)12df = 2o exp( 2a2 f 2 )d f

B TZ ,(5.52)

Combining Eqs (5.51) and (5.52), the normalized correlation coefficient becomes

With the above the autocorrelation function becomes

L1 L2 = R-,() = W-exp [- (B) 2] cosW'r (5.54)

where

w' = 2-r (fc,- f.,)

The power spectral density is calculated by taking the Fourier cosine transform of the auto-

correlation function:

SL(f) = 2j RL(r)coswrdr

2]0 Wex 1 rr-15 coswrcoswrdr
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SL0f) = W exp [- (2ZB)] cos(w'-w)rdr

w0 exp -1 ( -) :] cos(w' + w)rdr (5.55)

The integrals in the above equation are of the form of Eq (3.896,4) found in Gradshteyn and Ryzhik

(8:480). Using this equation, the PSD reduces to

Sf) W /2a 2ir f rx a2 (w' - w)2 + [_a 2(w'+w)2

2W TjCX ;7B '2ir2B2  j 22r2B2  J
w Wa~If [ 2 (f. .- f, f)2] (f[ _a ( -f, + f)2]}(.6

This PSD is illustrated in Figure 5.2.

Wa

SL()

Afc--) 0 f,-h
Frequency, f

Figure 5.2. PSD of the Linear Detector Output
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Since a narrow video bandwidth, b, was assumed, the variance of the CW plus noise video is

2SL(O)b. Therefore, from Eq ( 5.56) the variance of the CW plus noise video output is

2-' (-L) 2 "  2 a V12 expr 2a2 (f.,' - f.)2] rexp 2a2 (f: - f,) 2

L ~ ~ ~ 2 (7N) I- ex B2  ] epr B2

-2aWb F2 2a 2 (f.:, - f,)2]
B irxP B2

The standard deviation of the video output is simply the square root of the variance. So, the square

root of Eq ( 5.57) is

[T~~(N)2]~(3.) WYex [ a(fwf ] (5.58)

From the equation for the deflection criterion, Eq ( 5.29), an expression for the minimum

detectable average signal power is derived. The deflection criterion is represented by

Ls+N - L 4 C (5.59)

where C is a constant determined by the radar receiver structure. Substituting Eqs (5.45)-and

(5.58) into the-above equation yields

21 r a2  f,)
", -2W' [ sinr(fh - f'r 2 C exp 2 (f. (560)

4W F7 (fec -f')T7' ir V B B2  I (.0

Lawson and Uhlenbeck define the minimum detectable average signal power as Pmnin = "'r

where T, is the pulse recurrence interval (11:350). Now Pmin is derived:
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S2 7Pmin T.

4CW ab7r (2 [2 ( f,)2 1r r(f . ] 2 (561)
-b'To B (2)exp Lsinl.(fcwf 3 )TJ

From Eq (4.4) of Section 4.1.1, W can be written-in terms of the IF bandwidth, B, by

W = 0.2 IH(f)12df

= 2a 22o exp. \ -B df

= .B V f(5.62)a 2

Substituting the above result into Eq ( 5.61) the minimum detectable average signal power becomes

____B [T fabi'. '2 F- a f,2r 7r (fe -f h

Pmin - -o V 2 -T A-()ex B2 Lsinar(wf - f,)rJ

4or2C / .Bra2(fc.wf,) 21r s'(h. -f) 1 24 r (21r) 1 exp s)2 [ s =o ] (5.63)
= -o /ab(2' ) ' 4 B2 [sin 7r(fc - if)rJ

To quantify the effects of on-frequency CW interference, the minimum average power required

for the case of large detuning, Fmin(OO), is first derived. Large detuning implies that Ifh-fI > B,

and in this case the CW interference can be considered to be nonexistent (11:351). This derivation

of Tfmin(oo) mirrors that of the derivation for the minimum signal power when-the CW-was present.

First, the numerator of-the expression for the deflection criterion, LS+vN - Ls+N is derived. LS+N

is obtained from the equation for the expectation of Eq (4.34) in Section 4.1.3:
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TS+N= V/Y 1 F1 ( I ;-'I 22+92) (5.64)

From the equations for a(t) and /(t), Eqs ( 5.20) and (5.21), without the CW signal, the term

a2 + /2 = S 2. With this, the expected value is

Ls+Ni= - 1F1  1-,1;-) (5.65)

Here, a small signal-to-noise ratio is assumed (S 2 /2W < 1). So, keeping ol,.j the first two terms

of the expansion for 1F1 -, 1;- S2 ,Eq (4.32) from Section 4.1.3, Ls+Nv becomes

s+ = 1+ (5.66)

The expected value for the noise only case is given by Eq ( 4.26):

LN ((5.67)

Combining the above two equations leads to

LJS+N -LN = rW (1 7)-

S2  irW (5.68)
W - V --

As- before, -because of-a-narrow video bandwidth, the above equation -is reduced by a-factor of br:

4WbrN E (5.69)
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Next, the denominator for the deflection criterion, [L - (TN) 2J]" is obtained from the PSD

for the noise only case. First, the Fourier cosine transform of the autocorrelation function, RL(r)

is taken to obtain the PSD, SL(f). Eq (4.48) gives the small signal-to-noise ratio approximation

for LLa. For the noise only case, S = 0 and a(t) = = 0. Therefore, the only applicable term

of this approximation is the term proportional to p2, and the autocorrelation function becomes

rWp2(r) (5.70)LiL2_= RL(r) = 8

The normalized correlation coeffirlent, p(T), was defined by Eq ( 5.53). Taking the Fourier cosine

transform of the above e aation yields the PSD:

SL(f) = 2j RL(T) coswrdr

= 2jo irWp2 (r) coswrdr

0o 8

= r 0 0 exp -rB ) 2]coswrdr (5.71)W 1

The above integral is of the form of Eq-(679) from the CRC Tables and reduces to (16:466)

Wab. ( a2.f2

SL(f) - 8B exp BL (5.72)

As before for a narrow video bandwidth, the variance-is 2SL(0)b:

- Wb,!- (5.73)
4B

Substituting Eqs (5.69) and (5.73) into the expression for the deflection criterion one finds
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lV-- (W i ( a ) (5.74)

where W was defined by Eq (5.62). This equation can be reduced to the expression for Tmin(oo)

as was doe for the case with CW present:

min( 4) = 42c f -"
Tmin(~oO) =- V -) (5.75)

For on-frequency OW, (f , = f'), the required minimum average signal power relative to the

power required when no CW is present is given -by

Pmin(O) = (87r2)1

Pmin(0o)

= 4.75 dB (5.76)

Lawson and Uhlenbeck compare this value with a value of 3.5 dB obtained experimentally by A.

L. Gardener and C. M. Allred (11:351). Lawson and Uhlenbeck also compare experimental data

with theoretical calculations for various-values of rlfcw - f, 1. The experimental data was collected

with a narrow video bandwidth and a large IF bandwidth where B = 2.2 (11:351). This data is

displayed in Table 5.1. As Lawson and Uhlenbeck point out, the theoretical values of infinity for

integer values of -rlAf, - arise because S 2 terms were neglected (11:352). Further, theoretical

values for rf,, - fI > 2.5 were not calculated -since the equation for 1min is not valid for values

of jfe, - fj > B (11:352). The theoretical values in Table 5.1 are calculated from the following

equation:

P'min [a2(fC f8 )2 ] r(f 1_r (5.77)
Tm in (0)-  - f-- j "[sin ir(f52 - f,)r(
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Table 5.1. Theoretical vs Experimental Values of Signal Threshold Due to CW Detuning for a
Linear Detector

rlf ,,f, [  Ffmin/Tfmin(0), dB
Experimental Theoretical

0.5 5.5 3.6
1 13.5 o

1.5 11 10.75
2 15 00

2.5 9 10.3
3 5

3.5 0
4 -2.5

4.5 -3.5
(11:352)

5.2 Effects of CW Interference on Quadratic Detection

In this section an analysis of the effects of CW interference on quadratic detection is accom-

plished. The analysis here closely follows that of the analysis of the effects on linear detection of

the previous section. The average output of the quadratic detector for the case of signal plus noise

is given by Eq (4.60) of Section 4.2.1:

=2W + 2 +P2  (5.78)

Substituting the expressions for a(t) and 8(t) , Eqs ( 5.20) and (5.21), the average value of the

detector output for Itl < Z becomes2

Q = 2W + X 2 sin2(w't + O.) + 2XS sin(w't + O,) sin O + S 2 sin2 O,

+X 2 cos2 (w't + Ocw) + 2XScos(w't + O,) cosO ,+ S2 cos 2 O

= 2W+ X 2 + 2XS [sin(w't + O,) sin O, cos(w't + O") cos 0,] + S2 (5.79)
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where

(i = 27r(fw - fa)

X = E exp [ - ; rf.)]

By the use of trigonometric identities, the above expression for Q can be reduced to the following

form:

Z7 = 2W + X 2 + 2XS cos(w't + V) + S2  (5.80)

where

=CW - 01

Since it was assumed that E >> S, the S2 term in the above equation is negligible. Therefore,

neglecting the S2 term, i can be written

Q = 2W + X2 + 2-S cos(w'i + o) (5.81)

When Itj > Z, S = 0 and Q = 2W + X2. This leads to the following expression forg;:

2W +E 2 exp [ 22(fBw-f.
2

Q- +2ESexp [ B ' cos[27r(fw -f,)t+-] It 11< (5.82)P 1 2

2W + E2 exp I- B2  I elsewhere

For a very narrow video bandwidth, b, oly the variation inside of the pulse width, r, needs

to be considered. Therefore, i is time averaged over the pulse width, r, to arrive at Q. For the

case of the signal present, S # 0
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Q = I 2W+X2+ 2XScos('t + p)dt

= 2W +X 2 + IX-S [sin (-t- + so) - sin -- + Po)]

= 2W+X'+2X-- [sin(.--\+ )+sin( -pj] (5.83)

where

= 27r(fcw - fe)

X= Eexp [- L' - )]

When no signal is present, S = 0, and the above equation reduces to Q = 2W + X 2. With these

expressions, the equation for Q becomes

-2 a 2(f u,-/,)2 $EPB(s;FfJ C+ = 2W + E2 exp P+ wf. exp[.L - ]

Q x {sin [7r (f -f,)r + ] + sin [7r (f,-f,)r - , with signal (5.84)

2 exp ,2a2(frTf.)2 without signal

As was the case for the analysis of the linear detector, the deflection criterion will beapplied.

As before, QS+N, is defined by (11:349):

QS+ = j 2 r f joxexp {... - (Qcw+,s- QCW)] dxdVp (5.85)

Now, QS+v is derived. The + Q, term reduces by way of trigonometric identities to
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= =SE [a2(fw --f)2]

QCW+,- QC - er(fx)eXp [
x fin [W (f w - f) r + W] + sin [(" (f w - M. ]

_ 2SE -- ) 'exp [ a (f .- f.)2_ sin[r f(.) 7,) ]Cos1
;7(-f,, f.)r I B2

= 7CosO (5.86)

where
- 2SE, [ a2(fc --. )2 1

-
=  exp a 2sin[7r(f.- f,)r]

Substituting the above expression for Q+, - QCW into Eq ( 5.85), gives the following equation for

QS+N:

Qs+N - 2/ X exp [ (X _7COSW)2] dzd p (5.87)

The-integrals in the above equation were solved in Section 5.1. They reduce in terms of 7Y to the

form of Eq ( 5.42):

2WS1 +y2 (5.88)

Substituting the expression for y into the above equation yields the following equation for QS+N:

QS+N = V(EW + L exp [ _ f,)2 sin7r(fw- f,)] 2 } (5.89)

The term QN is derived by setting S = 0 in the above equation, so that
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' = (5.90)

Now, QS+N - Q"N is obtained:

s = - V "exp [W _ f) 2  sin (5.91)

B2  r _f-) T

Since b, the video bandwidth, was assumed to be very narrow, the above equation is reduced

by a factor of br. Therefore, QS+N - QN becomes

-+ S2'E2br 2W r 2a(few _ f,) 2  sin ] r(fw - f )T__ .l 2

W QN P B2  I (I,, -f, ) f,) r I

To arrive at the standard deviation of the CW and noise only, the power spectral density

will first be obtained from the Fourier cosine transform of the autocorrelation function. The-auto

correlation function is given by Eq (4.66) of Section 4.2.1. Since the only term contributing to

the continuous spectrum of the output- is that term proportional to p, the autocorrelation becomes

Q1Q2 = 4Wp(r) (ala 2 + 1,6l2) (5.93)

where ac and a2 are from Eq ( 5.20) with S = 0 at times tj and t 2 respectively. Likewise, the /3

terms are from Eq ( 5.21) with S = 0. Now, the autocorrelation becomes

QQ2 = 4Wp,(r)X 2 (sine 1 sine 2 + cos O9 cos 02)

= 4Wp(r)X 2 cos( e l - 02) (5.94)
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where

X =,EeP 2(ISl]

(2= 2v (f,, -fl)t2 +O01u

With the above relationships, the autocorrelation becomes

Q1Q2 = 4WE~exp E 2a2(fcw j_; ) ] p(r) cos [2r(f, - f.)t- 2r(f- 2 - f,) 2]

= 4WE 2 exp [ 2'p( - f.)2 p(r) cos [27(r. -f,) r] (5.95)

The nrrmalized correlation coefficient, p(r), was calculated in Section 5.1 by the use of Eq

(4.45):

s 2 a596

With the above equation, the autocorrelation function becomes

Q1Q2 = Rq (r) = 4W 2exp [..2a 2 (fcw.- f,) 2] exp [1I (imiB)2] cosw'r (5.97)

where

= 2r (f. - f)

The power spectral density is calculated by taking the Fourier cosine transform of the auto-

correlation -function:
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0ooSQ (f) 2 1 2 RQ(r)coswrdr

E exp B 2  f] exp 2 a COW rcoswrdr (5.98)

The integral in the above equation was solved in Section 5.1, Eqs (5.55) and (5.56). Using these

relationships, the power spectral- density reduces to

SQ f) = 2WaE 2 /-2 ep [ 2a 2-f, f.)2] {exP[ 2a 2 B2,: 1,)2]

[ x 2a 2 (f, . _ f, + f)21(599+exp r B (5.9)

This PSD is illustrated in-Figure 5.3.

exp au f?

2WaB2

Sq (f)

-(few --fm 0 f.w fs

-Frequency, f

Figure-5.3. PSD of the Output of a Quadratic Detector
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Because a very narrow video bandwidth, b, was assumed, the variance of the CW plus noise

video output is 2SQ(0)b. Therefore, from Eq ( 5.99) the variance of the OW plus noise video output

is

.__fV x8aWbE 2 V- 4 (f.:.- f.)2]

B2 exp[ (5.100)

The standard deviation of the video output is simply the square root of the variance. So, the square

root of Eq ( 5.100) is

7r 2E B exp B2

From the equation for the deflection criterion, Eq ( 5.29), an expression for the minimum

detectable average signal power is derived. The deflection criterion is represented by

Q;U+N QN - C (5.102)

where C is a constant determined by the radar receiver structure. Substituting Eqs (5.92) and

(5.101) into the above equation yields

S2E2b 2W 2a2(f.:... f , )2 ] sin r(fo ___ f,)72

Swb Lexp " [sin-(fw-f)T]2

C (2.) " 2E 2aWb exp r 2a2 f, _) 2  (5.103)

The minimum detectable average signal power was defined as min = S", where , is the

pulse recurience interval (11:350). Now, Tmin for the quadratic detector is derived:
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S 2T

Pmin =T

_ 2CW abir ( 2~ 7ir (f 7 , 12 (5.104)
EbTo VB [sin r(fc -f,)r/

W was derived in terms of the IF bandwidth B in-section 5.1, and is given by Eq ( 5.62)

where

W = 1(5.105)

Substituting the above result into Eq ( 5.104) the minimum detectable average signal power becomes

Pmin - EabT 2 VB r Lsin 7r(fc,. - fT)rJ
_ 2o. 2 B(27r),-, [r f,,. _ f,. ._s ", 2] (5.106)
TE_ L a~sin r(f,, - f)rJ

An analysis of the effects of the CW interference similar to that for the case of a linear detector

is-accomplished here. Tmin(C0)Tis derived to quantify the effects of on-frequency jamming. The

numerator of the expression for the deflection criterion, QS+N - QN is derived first. Qs+N is

obtained from Eq ( 4.60) of Section- 4.2.1:

Qs+N = 2W + a2 + #2 (5.107)

From the expressions for ae(t) and fl(t), Eqs ( 5.20) and ( 5.21), a 2 + P 2 
- S 2 when no CW

interference is present. This-leads to
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QS+N = 2W + S2  (5.108)

The term QN follows directly from Eq ( 4.55):

QN = 2W (5.109)

Combining the two equations above yields the following expression:

QS+N - Q = s 2 (5.110)

The above equation is reduced by a factor of br to account for the narrow video bandwidth. This

results in

Qs+N - - -S 2 br (5.111)

Without CW interference present, the denominator of the expression of the deflection cri-

terion, [ -( N)2] 1 is derived from the PSD for the case of noise only, SQ(f). First, the

autocorrelation function is obtained by the application of the expression for Q1Q2, Eq (4.66) of

Section 4.2.1. In the noise only case S = 0 and a = = 0. Therefore

Q1Q2 = RQ(r) = 4W 2p2(r) (5.112)

The PSD is derived by taking the Fourier cosine transform of the aut.ocorrelation function:
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SQ(f) = 2 RQ(r)coswfdr

= 8W2f p2 (r)cos wrdr

- 8W2Jexp a coswrdr (5.113)

The integral in the above equation was solved in the previous section by the use of Eq (679) from

the CRC Tables (16:466). It reduces to

Sq(,f) = 4/2 aexp (_ 2 , 2 ) (5.114)

The variance, Q. - (P )2
, is merely 2SQ(O)b:

Q -8W
2ab (5.115)

Substituting Eqs (5.111) and ( 5.115) into the expression for the deflection criterion, Eq

(5.29), one obtains

S2br = C 8W 2 ab (5.116)

Similar to the derivation in the previous section, the above equation reduces to the following

equation for Tmin(oo):

Pmin(OO) = 2o2C \lB (4 ) (5.117)

To compare on-frequency OW jamming with the case of large detuning one obtains
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TFmin(O) 1 r 2)1

Pmin(OO) -
= E(1.49) (5.118)

This value for the on-frequency jamming is contrasted with the value of 4.75 dB obtained for linear

detection. Here, the magnitude of the OW jamming signal, E, has a direct impact on the minimum

power required.

Although no experimental data was available for the quadratic detector, theoretical values of

Tmin/Tmin(O) are derived for values of r.f¢,, - fi I< 2.5. These values are tabulated in Table

5.2. As before, Br = 2.2. For values of rIfw - fI > 2.5, the large detuning causes the effects

of the OW interference to be negligible. This follows from the experimental data obtained for the

linear detector. The theoretical values in Table 5.2 are calculated from

Pmin r r (hc. h 12
Pmin(O) [sin i(f ow - )(5

Table 5.2. Theoretical Values of Signal Threshold Due to CW Detuning for a Quadratic Detector

lflw - hij min/Pmin(O), dB

0.5 3.9
1 00

1.5 13.5
2 00

2.5 17.9
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VL Conclusions and Recommendations

6.1 Conclusions

From the expression for the minimum power required for signal detection by the linear de-

tector, Eq ( 5.63), the minimum power is a function of the frequency difference fe, - f,. For

on-frequency interference, f,, = f, Lawson and Uhlenbeck show from experiment that the mini-

mum required signal power is 3.5 dB higher than that required when no CW interference is present

(11:351-352). This increase in required power is compared with the theoretical value of 4.75 dB

(11:352). The theoretical and experimental data in Table 5.1 show that the minimum power re-

quired- for detection increases as the detuning increases until the detuning is so great as to render

the CW interference negligible (11:352).

Similarly, the minimum required power for the quadratic detector is given by Eq ( 5.106).

This equation shows that the minimum power for the quadratic detector is a function of both

the frequency difference, f, - f,, and the magnitude of the CW signal, E. The minimum power

required when the interference is on-frequency versus the power required without CW interference is

'(1.49). The data tabulated in Table 5.2 show that as is the case for linear detection, the minimum

power required increases until the detuning is so great that the effects of the CW interference are

negligible.

The effect of a pure CW tone as an interfering signal is not a significant degradation. The

effect of CW interference is especially limited when the frequency of the CW signal differs greatly

from that of the carrier frequency of the pulsed radar signal. However, when some other modulation

is present with the CW interference, the combined effects should be much greater than that of an

unmodulated CW signal.
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6.2 Recommendations

It is recommended that follow-on work be accomplished on this study of the effects of noise

jamming on radar receivers. This follow-on work would include applying the analysis techniques

presented here to the effects of CW interference on different pulsed radar receiver types. Specifically,

these receivers would include matched filter, pulse compression and CFAR receivers. Additionally,

various jamming waveforms should be substituted for the CW interference, and the effects on the

various receivers should be analyzed. Lastly, instead of the application of the deflection criterion,

an analysis by the use of a likelihood ratio test should be used to determine the effects of the

different jamming waveforms on the radar receiver's Pd and P .
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